Skip to main content
Log in

Membrane filtering properties of the bumblebee (Bombus terrestris) photoreceptors across three spectral classes

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Filtering properties of the membrane form an integral part of the mechanisms producing the light-induced electrical signal in insect photoreceptors. Insect photoreceptors vary in response speed between different species, but recently it has also been shown that different spectral photoreceptor classes within a species possess diverse response characteristics. However, it has not been quantified what roles phototransduction and membrane properties play in such diversity. Here, we use electrophysiological methods in combination with system analysis to study whether the membrane properties could create the variation of the response speed found in the bumblebee (Bombus terrestris) photoreceptors. We recorded intracellular responses from each photoreceptor class to white noise-modulated current stimuli and defined their input resistance and linear filtering properties. We found that green sensitive cells exhibit smaller input resistance and membrane impedance than other cell classes. Since green sensitive cells are the fastest photoreceptor class in the bumblebee retina, our results suggest that the membrane filtering properties are correlated with the speed of light responses across the spectral classes. In general, our results provide a compelling example of filtering at the sensory cell level where the biophysical properties of the membrane are matched to the performance requirements set by visual ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3 dB:

3 Decibels

C m :

Membrane capacitance

DA:

Dark-adapted

t :

Response half-width

IV curve:

Current–voltage relation

LA:

Light-adapted

R m :

Membrane resistance

σ:

Skewness of the log-normal fit of the impulse response

τm :

Membrane time-constant

t p :

Time-to-peak of the log-normal fit of the impulse response

WN:

“White noise”, pseudorandomly modulated time-series that has a constant power spectrum within a defined bandwidth

References

  • Anderson JC, Laughlin SB (2000) Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system. Vision Res 40:13–31

    Article  PubMed  CAS  Google Scholar 

  • Brennecke R, Lindemann B (1974) Theory of a membrane-voltage clamp with discontinuous feedback through a pulsed current clamp. Rev Sci Instrum 45:184–188

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  PubMed  CAS  Google Scholar 

  • Cameron SA, Hines HM, Williams PH (2007) A comprehensive phylogeny of the bumble bees (Bombus). Biol J Linn Soc 91:161–188

    Article  Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170:545–563

    PubMed  CAS  Google Scholar 

  • Conway BR (2002) Neural mechanisms of colour vision. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Finkel AS, Redman SJ (1984) Theory and operation of a single microelectrode voltage clamp. J Neurosci Methods 11:101–127

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen R, Wcislo WT, Warrant EJ (2008) Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 18:349–353

    Article  PubMed  CAS  Google Scholar 

  • Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79:314–320

    Article  PubMed  CAS  Google Scholar 

  • Giger AD, Srinivasan MV (1996) Pattern recognition in honeybees: chromatic properties of orientation analysis. J Comp Physiol A 178:763–769

    Article  Google Scholar 

  • Hardie RC (1979) Electrophysiological analysis of fly retina. I: comparative properties of R1–6 and R 7 and 8. J Comp Physiol A 129:19–33

    Article  Google Scholar 

  • Heimonen K, Salmela I, Kontiokari P, Weckström M (2006) Large functional variability in cockroach photoreceptors: optimization to low light levels. J Neurosci 26:13454–13462

    Article  PubMed  CAS  Google Scholar 

  • Heimonen K, Immonen E-V, Frolov RV, Salmela I, Juusola M, Vähäsöyrinki M, Weckström M (2012) Signal coding in cockroach photoreceptors is tuned to dim environments. J Neurophysiol 108:2641–2652

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol A 117:127–162

    Article  Google Scholar 

  • Howard J, Dubs A, Payne R (1984) The dynamics of phototransduction in insects: a comparative study. J Comp Physiol A 154:707–718

    Article  Google Scholar 

  • Juusola M, Weckström M (1993) Band-pass filtering by voltage-dependent membrane in an insect photoreceptor. Neurosci Lett 154:84–88

    Article  PubMed  CAS  Google Scholar 

  • Juusola M, Kouvalainen E, Järvilehto M, Weckström M (1994) Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. J Gen Physiol 104:593–621

    Article  PubMed  CAS  Google Scholar 

  • Kaiser W (1968) Zur Frage des Unterscheidungsvermögens für Spektralfarben: eine Untersuchung der Optomotorik der königlichen Glanzfliege Phormia regina Meig. Z Vergl Physiol 61:71–102

    Google Scholar 

  • Kaiser W (1974) The spectral sensitivity of the honeybee’s optomotor walking response. J Comp Physiol 90:405–408

    Article  Google Scholar 

  • Kaiser W, Liske E (1974) Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J Comp Physiol 89:391–408

    Article  Google Scholar 

  • Kelber A (2006) Invertebrate colour vision. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 250–290

    Google Scholar 

  • Laughlin SB, Weckström M (1993) Fast and slow photoreceptors: a comparative study of the functional diversity of coding and conductances in the diptera. J Comp Physiol A 172:593–609

    Article  Google Scholar 

  • Laughlin SB, de Ruyter van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41

    Article  PubMed  CAS  Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee’s visual world with a third dimension. Nature 332:356–357

    Article  Google Scholar 

  • Macuda T, Gegear RJ, Laverty TM, Timney B (2001) Behavioural assessment of visual acuity in bumblebees (Bombus impatiens). J Exp Biol 204:559–564

    PubMed  CAS  Google Scholar 

  • Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems: the white noise approach. Plenum, New York

    Book  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    Article  PubMed  CAS  Google Scholar 

  • Niven JE, Vähäsöyrinki M, Kauranen M, Hardie RC, Juusola M, Weckström M (2003) The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature 421:630–634

    Article  PubMed  CAS  Google Scholar 

  • Niven JE, Vähäsöyrinki M, Juusola M, French AS (2004) Interactions between light-induced currents, voltage-gated currents, and input signal properties in Drosophila photoreceptors. J Neurophysiol 91:2696–2706

    Article  PubMed  Google Scholar 

  • Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 5:e116

    Article  PubMed  Google Scholar 

  • Paulk AC, Gronenberg W (2008) Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. Arthropod Struct Dev 37:443–458

    Article  PubMed  Google Scholar 

  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous J-M, Gronenberg W (2008) The processing of color, motion, and stimulus are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332

    Article  PubMed  CAS  Google Scholar 

  • Paulk AC, Dacks AM, Gronenberg W (2009a) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456

    Article  PubMed  Google Scholar 

  • Paulk AC, Dacks AM, Philips-Portillo J, Fellous JM, Gronenberg W (2009b) Visual processing in the central bee brain. J Neurosci 29:9987–9999

    Article  PubMed  CAS  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  PubMed  CAS  Google Scholar 

  • Salmela I, Immonen EV, Frolov R, Krause S, Krause Y, Vähäsöyrinki M, Weckström M (2012) Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors. BMC Neurosci 13:93

    Article  PubMed  CAS  Google Scholar 

  • Skorupski P, Chittka L (2010) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903

    Article  PubMed  CAS  Google Scholar 

  • Skorupski P, Chittka L (2011) Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens. PLoS One 6:e25989

    Article  PubMed  CAS  Google Scholar 

  • Skorupski P, Döring TF, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A 193:485–494

    Article  Google Scholar 

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453

    Article  PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Spekreijse H, Oostings H (1970) Linearizing: a method for analysing and synthesizing non-linear systems. Kybernetik 7:22–30

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Lehrer M (1984) Temporal acuity of honeybee vision: behavioural studies using moving stimuli. J Comp Physiol A 155:297–312

    Article  Google Scholar 

  • Srinivasan M, Lehrer M (1985) Temporal resolution of colour vision in the honeybee. J Comp Physiol A 157:579–586

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Lehrer M (1987) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162:159–172

    Article  Google Scholar 

  • Vähäsöyrinki M, Niven JE, Hardie RC, Weckström M, Juusola M (2006) Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels. J Neurosci 26:2652–2660

    Article  PubMed  Google Scholar 

  • Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vision Res 41:639–653

    Article  PubMed  CAS  Google Scholar 

  • Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O’Kane CJ, Tang S, Lee CH, Hardie RC (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:925–931

    Article  PubMed  CAS  Google Scholar 

  • Weckström M, Laughlin SB (1995) Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci 18:17–21

    Article  PubMed  Google Scholar 

  • Weckström M, Hardie RC, Laughlin SB (1991) Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J Physiol 440:635–637

    PubMed  Google Scholar 

  • Weckström M, Kouvalainen E, Juusola M (1992) Measurement of cell impedance in frequency domain using discontinuous current clamp and white-noise-modulated current injection. Pflügers Arch 421:469–472

    Article  PubMed  Google Scholar 

  • Yamaguchi S, Wolf R, Desplan C, Heisenberg M (2008) Motion vision is independent of color in Drosophila. Proc Natl Acad Sci USA 105:4910–4915

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Weckström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vähäkainu, A., Vähäsöyrinki, M. & Weckström, M. Membrane filtering properties of the bumblebee (Bombus terrestris) photoreceptors across three spectral classes. J Comp Physiol A 199, 629–639 (2013). https://doi.org/10.1007/s00359-013-0814-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0814-x

Keywords

Navigation