Skip to main content
Log in

Kinetics of olfactory responses might largely depend on the odorant–receptor interaction and the odorant deactivation postulated for flux detectors

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Experimental data together with modeling of pheromone perireceptor and receptor events in moths (Bombyx mori, Antheraea polyphemus) suggest that the kinetics of olfactory receptor potentials largely depend on the association of the odorant with the neuronal receptor molecules and the deactivation of the odorant accumulated around the receptor neuron. The first process could be responsible for the reaction times (mean about 400 ms) of the nerve impulses at threshold. The second process has been postulated for flux detectors such as olfactory sensilla of moths. The odorant deactivation could involve a modification of the pheromone-binding protein (PBP) that “locks” the pheromone inside the inner binding cavity of the protein. The model combines seemingly contradictory functions of the PBP such as pheromone transport, protection of the pheromone from enzymatic degradation, pheromone deactivation, and pheromone–receptor interaction. Model calculations reveal a density of at least 6,000 receptor molecules per µm2 of neuronal membrane. The volatile decanoyl-thio-1,1,1-trifluoropropanone specifically blocks pheromone receptor neurons, probably when bound to the PBP and by competitive binding to the receptor molecules. The shallow dose–response curve of the receptor potential and altered response properties observed with pheromone derivatives or after adaptation may indicate shortened opening of ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

Ac1:

(E,Z)-6,11-hexadecadienyl acetate

ApolPBP:

Antheraea polyphemus pheromone-binding protein

bombykol:

(E,Z)-10,12-hexadecadien-1-ol

bombykal:

(E,Z)-10,12-hexadecadienal

BSA:

Bovine serum albumin

DEET:

N,N-diethyl-3-methylbenzamide

DTFP:

Decanoyl-thio-1,1,1-trifluoropropanone

EAG:

Electroantennogram

EC50 :

Effective concentration

ERP:

Elementary receptor potential

k i , k i :

Rate constants of forward and backward reactions, respectively

model N:

Model with the hypothetical enzyme N for pheromone deactivation

ORCO:

Olfactory receptor co-receptor

PBP:

Pheromone-binding protein

SNMP:

Sensory neuron membrane protein

U :

Pheromone uptake (μM/s) related to the hair volume (2.6 pl)

U sat :

Pheromone uptake (μM/s) at which the postulated deactivation process is saturated

VUAA1:

2-(4-ethyl-5-(pyridin-3-yl)-4H-1,2,4-triazol-3-ylthio)-N-(4-ethylphenyl) acetamide

A:

A-form of PBP, with C-terminus in

B:

B-form of PBP, with C-terminus out

B′:

Scavenger form of PBP

E:

Pheromone-degrading enzyme

F:

Free pheromone

Fair :

Free pheromone in air

FA:

Pheromone–PBP A-form complex, able to bind R

FAR:

Pheromone–PBP–receptor complex

FAR′:

Activated pheromone–PBP–receptor complex

FB:

Pheromone–PBP B-form complex

FB′:

Pheromone–PBP B′-form complex, deactivated pheromone

M:

Pheromone metabolite

MB′:

Metabolite–PBP scavenger form complex

N:

Pheromone deactivating enzyme, hypothetical

R:

Pheromone receptor molecule, at the receptor neuron membrane

R′:

Activated receptor molecule

References

  • Benton R, Vannice KS, Vosshall L (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–297

    PubMed  CAS  Google Scholar 

  • Bhandawat V, Reisert J, Yau KW (2005) Elementary response of olfactory receptor neurons to odorants. Science 308:1931–1934

    PubMed  CAS  Google Scholar 

  • Boeckh J (1962) Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengräbers (Necrophorus, Coleoptera). Z Vergl Physiol 46:212–248

    Google Scholar 

  • Bohbot JD, Dickens JC (2012) Odorant receptor modulation: ternary paradigm for mode of action of insect repellents. Neuropharmacology 62:2086–2095

    PubMed  CAS  Google Scholar 

  • Butenandt A, Hecker E (1961) Synthese des Bombykols, des Sexual-Lockstoffes des Seidenspinners und seiner geometrischen Isomeren. Angew Chemie 73:349–353

    CAS  Google Scholar 

  • Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforschung 14b:283–284

    Google Scholar 

  • Charlier L, Antonczak S, Jacquin-Joly E, Cabrol-Bass D, Golebiowski J (2008) Deciphering the selectivity of Bombyx mori pheromone binding protein for bombykol over bombykal. A theoretical approach. Chem Phys Chem 9:2785–2793

    PubMed  CAS  Google Scholar 

  • Chen S, Luetje CW (2012) Identification of new agonists of the insect odorant receptor co-receptor subunit. PLoS One 7(5):e36784

    PubMed  CAS  Google Scholar 

  • Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P (2011) Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 36:335–347

    PubMed  CAS  Google Scholar 

  • De Kramer JJ, Hemberger J (1987) The neurobiology of pheromone reception. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, New York, pp 433–472

    Google Scholar 

  • Dolzer J, Fischer K, Stengl M (2003) Adaptation in pheromone-sensitive trichoid sensilla of the hawk moth Manduca sexta. J Exp Biol 206:1575–1588

    PubMed  Google Scholar 

  • Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Sci 8:128-131

    CAS  Google Scholar 

  • Du GH, Prestwich GD (1995) Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732

    PubMed  CAS  Google Scholar 

  • Du GH, Ng CS, Prestwich GD (1994) Odorant binding by a pheromone binding protein: active site mapping by photoaffinity labeling. Biochemistry 33:4812–4819

    PubMed  CAS  Google Scholar 

  • Durant N, Carot-Sans G, Bozzolan F, Rosell G, Siaussat F, Debernard S, Chertemps D, Maibeche-Coisne M (2011) Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One 6(12):e29147. doi:10.1371/journal.pone.0029147

    Google Scholar 

  • Eschrich R, Kumar GL, Keil TA, Guckenberger R (1998) Atomic force microscopy on the olfactory dendrites of the silkmoths Antheraea polyphemus and A. pernyi. Cell Tissue Res 294:179–185

    PubMed  CAS  Google Scholar 

  • Fan J, Francis F, Liu Y, Chen JL, Cheng DF (2011) An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res 10:3056–3069

    PubMed  CAS  Google Scholar 

  • Fein A, Charlton JS (1975) Local adaptation in the ventral photoreceptors of Limulus. J Gen Physiol 66:823–836

    PubMed  CAS  Google Scholar 

  • Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses 33:291–299

    PubMed  CAS  Google Scholar 

  • Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5:745–757

    PubMed  CAS  Google Scholar 

  • Gräter F, Xu W, Leal W, Grubmüller H (2006) Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 14:1577–1586

    PubMed  Google Scholar 

  • Gu Y, Rospars J-P (2011) Dynamical modeling of the moth pheromone-sensitive olfactory receptor neuron within its sensillar environment. PLoS One 6(3):e17422. doi:10.1371/journal.pone.0017422

    PubMed  CAS  Google Scholar 

  • Gu Y, Lucas P, Rospars J-P (2009) Computational model of the insect pheromone transduction cascade. PLoS Comput Biol 5(3):e1000321. doi:10.1371/journal.pcbi.1000321

    PubMed  Google Scholar 

  • Ha TS, Smith DP (2009) Odorant and pheromone receptors in insects. Front Cell Neurosci 3:10–15

    PubMed  Google Scholar 

  • He X, Tzotzos G, Woodcock C, Pickett JA, Hooper T, Field LM, Thou JJ (2010) Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components. J Chem Ecol 36:1293–1305

    PubMed  CAS  Google Scholar 

  • Hooper AM, Dufour S, He X, Muck A, Zhou JJ, Almeida R, Field LM, Svatos A, Pickett JA (2009) High-throughput ESI_MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP, its pheromone components and some analogues. Chem Commun 2009:5725–5727

    Google Scholar 

  • Horst R, Damberger F, Luginbühl P, Güntert P, Peng G, Nikonova L, Leal W, Wüthrich K (2001a) NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci USA 98:14374–14379

    PubMed  CAS  Google Scholar 

  • Horst R, Damberger F, Peng G, Nikonova L, Leal WS, Wüthrich K (2001b) NMR assignment of the A form of the pheromone-binding protein of Bombyx mori. J Biomol NMR 19:79–80

    PubMed  CAS  Google Scholar 

  • Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA 102:14075–14079

    PubMed  CAS  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signalling component required for pheromone sensitivity in Drosophila. PNAS 105:10995–11000

    Google Scholar 

  • Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA 108:8821–8825

    PubMed  CAS  Google Scholar 

  • Kain P, Chakraborty TS, Sundaram S, Siddiqi O, Rodrigues V, Hasan G (2008) Reduced odor responses from antennal neurons of Gqα, phospholipase Cβ, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J Neurosci 28:4745–4755

    PubMed  CAS  Google Scholar 

  • Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology IV. Springer, Heidelberg, pp 351–431

    Google Scholar 

  • Kaissling KE (1972) Kinetic studies of transduction in olfactory receptors of Bombyx mori. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftl Verlagsges, Stuttgart, pp 207–213

    Google Scholar 

  • Kaissling KE (1974) Sensory transduction in insect olfactory receptors. In: Jaenicke L (ed) Mosbacher Coll Ges Biolog Chemie, Biochemistry of sensory functions, vol. 25. Springer, Berlin, pp 243–273

    Google Scholar 

  • Kaissling KE (1977) Structures of odour molecules and multiple activities of receptor cells. In: Le Magnen J, MacLeod P (eds) Olfaction and taste VI. Inf Retrieval, London, pp 9–16

    Google Scholar 

  • Kaissling KE (1980) Action of chemicals, including (+)trans Permethrin and DDT, on insect olfactory receptors. In: Insect neurobiology and pesticide action (Neurotox 79). Society of Chemical Industry, London, pp 351–358

  • Kaissling KE (1986) Chemo-electrical transduction in insect olfactory receptors. Ann Rev Neurosci 9:21–45

    Google Scholar 

  • Kaissling KE (1987) RH Wright lectures on insect olfaction. In: Colbow K (ed) Simon Fraser University, Burnaby, pp 1–190

  • Kaissling KE (1995) Single unit and electroantennogram recordings in insect olfactory organs. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction: current techniques and protocols. CRC Press, Boca Raton, pp 361–386

    Google Scholar 

  • Kaissling KE (1998) Flux detectors versus concentration detectors: two types of chemoreceptors. Chem Senses 23:99–111

    PubMed  CAS  Google Scholar 

  • Kaissling KE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26:125–150

    PubMed  CAS  Google Scholar 

  • Kaissling KE (2009a) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A 195:895–922

    CAS  Google Scholar 

  • Kaissling KE (2009b) The sensitivity of the insect nose: the example of Bombyx mori. In: Marco S, Gutierrez-Galvez A (eds) Biologically inspired signal processing for chemical sensing, SCI 188. Springer, Heidelberg, pp 45–52

    Google Scholar 

  • Kaissling KE, Kumar GL (1997) Densities of putative receptor molecules and ion channels in dendritic membranes of pheromone receptor cells of moths. In: Elsner N, Wässle H (eds) Proceedings of the 25th Göttingen neurobiol conference, Thieme, Stuttgart, vol II, p 429

  • Kaissling KE, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28

    PubMed  CAS  Google Scholar 

  • Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organisation. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters hormones and pheromones in Insects. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 261–282

    Google Scholar 

  • Kaissling KE, Kasang G, Bestmann HJ, Stransky W, Vostrowsky O (1978) A New pheromone of the silkworm moth Bombyx mori. Sensory pathway and behavioral effect. Naturwissenschaften 65:382–384

    CAS  Google Scholar 

  • Kaissling KE, Klein U, de Kramer JJ, Keil TA, Kanaujia S, Hemberger J (1985) Insect olfactory cells: electrophysiological and biochemical studies. In: Changeux JP and Hucho F (eds) Molecular basis of nerve activity. Proceedings of the International Symposium in Memory of D. Nachmansohn. Walter de Gruyter, Berlin, pp 173–183

  • Kaissling KE, Zack-Strausfeld C, Rumbo ER (1987) Adaptation processes in insect olfactory receptors. Mechanisms and behavioral significance. Olfaction and Taste IX. Ann N Y Acad Sci 510:104–112

    PubMed  CAS  Google Scholar 

  • Kaissling KE, Hildebrand JG, Tumlinson JH (1989a) Pheromone receptor cells in the male moth Manduca sexta. Arch Insect Biochem Physiol 1O:273–279

    Google Scholar 

  • Kaissling KE, Meng LZ, Bestmann HJ (1989b) Responses of bombykol receptor cells to (Z, E)-4,6-hexadecadiene and linalool. J Comp Physiol A 165:147–154

    Google Scholar 

  • Kanaujia S, Kaissling KE (1985) Interactions of pheromone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81

    CAS  Google Scholar 

  • Kasang G (1971) Bombykol reception and metabolism on the antennae of the silkmoth Bombyx mori. In: Ohloff G, Thomas AF (eds) Gustation and olfaction. Academic Press, London, pp 245–250

    Google Scholar 

  • Kasang G (1973) Physikochemische Vorgänge beim Riechen des Seidenspinners. Naturwissenschaften 60:95–101

    CAS  Google Scholar 

  • Kasang G, Kaissling KE (1972) Specificity of primary and secondary olfactory processes in Bombyx antennae. In: Schneider D (ed) International symposium on olfaction and taste IV. Wissensch Verlagsgesellsch, Stuttgart, pp 200–206

  • Kasang G, von Proff L, Nicholls M (1988) Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus. Z Naturforsch 43c:275–284

    Google Scholar 

  • Kasang G, Nicholls M, Keil TA, Kanaujia S (1989a) Enzymatic conversion of sex pheromones in olfactory hairs of the male silkworm moth Antheraea polyphemus. Z Naturforsch 44c:920–926

    Google Scholar 

  • Kasang G, Nicholls M, von Proff L (1989b) Sex pheromone conversion and degradation in antennae of the male silkworm moth Bombyx mori L. Experientia 45:81–87

    CAS  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    PubMed  CAS  Google Scholar 

  • Keil TA (1984a) Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta: Lepidoptera). Zoomorphology 104:147–156

    Google Scholar 

  • Keil TA (1984b) Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell 16:705–717

    PubMed  CAS  Google Scholar 

  • Keil TA (1999) Morphology and development of the peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 5–47

    Google Scholar 

  • Keil TA, Klein U (1984) Dendritic membrane from insect olfactory hairs: isolation method and electron microscopic observations. Cell Mol Neurobiol 4:385–396

    PubMed  Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect Ultrastructure, vol 2. Plenum Publications, New York, pp 477–516

    Google Scholar 

  • Kirschfeld K (1966) Discrete and graded receptor potentials in the compound eye of the fly (Musca). In: Proceedings of the International Symposium on the functional organization of the compound eye. Pergamon press, Oxford, pp 291–307

  • Klein U (1987) Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). J Insect Biochem 17:1193–1204

    Google Scholar 

  • Klusák V, Havlas Z, Rulísek L, Vondrásek J, Svatos A (2003) Sexual attraction in the silkworm moth: nature of binding of bombykol in pheromone binding protein—an ab initio study. Chem Biol 10:331–340

    PubMed  Google Scholar 

  • Kodadová B, Kaissling KE (1996) Effect of temperature on silkmoth olfactory responses to pheromone can be simulated by modulation of resting cell membrane resistances. J Comp Physiol A 179:15–27

    Google Scholar 

  • Laughlin JD, Ha TS, Jones DNM, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265

    PubMed  CAS  Google Scholar 

  • Lautenschlager C, Leal WS, Clardy J (2005) Coil-to-helix and ligand release of Bombyx mori pheromone-binding protein. Biochem Biophys Res Commun 335:1044–1050

    CAS  Google Scholar 

  • Leal WS (2004) Pheromone unwrapping by pH flip-flopping. Chem Biol 11:1029–1031

    PubMed  CAS  Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci USA 102:5386–5391

    PubMed  CAS  Google Scholar 

  • Maida R, Ziegelberger G, Kaissling KE (2003) Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B 173:565–573

    PubMed  CAS  Google Scholar 

  • Michel E, Damberger FF, Ishida Y, Fiorito F, Lee D, Leal WS, Wüthrich K (2011) Dynamic conformational equilibria in the physiological function of the Bombyx mori pheromone-binding protein. J Mol Biol 408:922–931

    PubMed  CAS  Google Scholar 

  • Minor AV, Kaissling KE (2003) Cell responses to single pheromone molecules may reflect the activation kinetics of olfactory receptor molecules. J Comp Physiol A 189:221–230

    CAS  Google Scholar 

  • Montague SA, Mathew D, Carlson JR (2011) Similar odorants elicit different behavioral and physiological responses, some supersustained. J Neurosci 31:7891–7899

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642

    PubMed  CAS  Google Scholar 

  • Pelletier J, Guidoline A, Zainulabeuddin S, Cornel AJ, Leal WS (2010) Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 36:245–248

    PubMed  CAS  Google Scholar 

  • Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962

    PubMed  CAS  Google Scholar 

  • Pophof B (1998) Inhibitors of sensillar esterase reversibly block the responses of moth pheromone receptor cells. J Comp Physiol A 183:153–164

    CAS  Google Scholar 

  • Pophof B (2002) Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89:515–518

    PubMed  CAS  Google Scholar 

  • Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem Senses 29:117–126

    PubMed  Google Scholar 

  • Pophof B, Gebauer T, Ziegelberger G (2000) Decyl-thio-trifluoropropanone, a competitive inhibitor of moth pheromone receptors. J Comp Physiol A 186:315–323

    PubMed  CAS  Google Scholar 

  • Quero C, Bau J, Guerrero A, Renou M (2004) Responses of the olfactory receptor neurons of the corn stalk borer Sesamia nonagrioides to components of the pheromone blend and their inhibition by trifluoromethyl ketone analogue. Pest Manag Sci 60:719–726

    PubMed  CAS  Google Scholar 

  • Renou M, Berthier A, Guerrero A (2002) Disruption of responses to pheromone by (Z)-11-hexadecenyl trifluoromethyl ketone, an analogue of the pheromone, in the cabbage army worm Mamestra brassicae. Pest Manag Sci 58:839–844

    PubMed  CAS  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272:14792–14799

    PubMed  CAS  Google Scholar 

  • Rogers ME, Steinbrecht RA, Vogt RG (2001) Expression of SNMP-1 in olfactory neurons and sensilla of male and female antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res 303:433–446

    PubMed  CAS  Google Scholar 

  • Rospars JP, Lucas P, Coppey M (2007) Modelling the early steps of transduction in insect olfactory receptor neurons. Biosystems 89:101–109

    PubMed  CAS  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein–bombykol complex. Chem Biol 7:143–151

    PubMed  CAS  Google Scholar 

  • Sargsyan VV, Getahun MN, Llanos SL, Olsson SB, Hansson BS, Wicher DD (2011) Phosphorylation via PKC regulates the function of the Drosophila odorant co-receptor. Front Cell Neurosci 5:1–8

    Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    PubMed  CAS  Google Scholar 

  • Schneider D (1957) Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13:89

    Google Scholar 

  • Scholes J (1965) Discontinuity of the excitation process in locust visual cells. Cold Spring Harbour Symp Quant Biol 30:517–527

    CAS  Google Scholar 

  • Smart RR, Kiely AA, Beale MM, Vargas EE, Carraher CC, Kralicek AV, Christie DL, Chen CC, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:11

    Google Scholar 

  • Stange G, Diesendorf M (1973) The response of the honey bee antennal CO2-receptors to N2O and Xe. J Comp Physiol 86:139–158

    CAS  Google Scholar 

  • Stange G, Stowe S (1999) Carbon-dioxide sensing structures in terrestrial arthropods. Microsc Res Tech 47:416–427

    PubMed  CAS  Google Scholar 

  • Steinbrecht RA (1996) Are odorant-binding proteins involved in odorant discrimination? Chem Senses 21:719–727

    PubMed  CAS  Google Scholar 

  • Steinbrecht RA (1999) Olfactory receptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors. Springer, Tokyo, pp 155–176

    Google Scholar 

  • Steinbrecht RA, Kasang G (1972) Capture and conveyance of odour molecules in an insect olfactory receptor. In: Schneider D (ed) Olfaction and taste IV. Wiss Verlagsges, Stuttgart, pp 193–199

    Google Scholar 

  • Steinbrecht RA, Zierold K (1989) Electron probe X-ray microanalysis in the silkmoth antenna—problems with quantification in ultrathin cryosections. In: Zierold K, Hagler HK (eds) Electron probe microanalysis. Applications in biology and medicine. Springer Series in Biophysics 4. Springer, Berlin, pp 87–97

  • Steinbrecht RA, Ozaki M, Ziegelberger G (1992) Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res 270:287–302

    CAS  Google Scholar 

  • Steinbrecht RA, Laue M, Ziegelberger G (1995) Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silkmoths Antheraea and Bombyx. Cell Tissue Res 282:203–217

    CAS  Google Scholar 

  • Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:1–15

    Google Scholar 

  • Syed Z, Ishida Y, Taylor K, Kimbrell DA, Leal WS (2006) Pheromone reception in fruit flies expressing a moth’s odorant receptor. PNAS 103:16538–16543

    PubMed  CAS  Google Scholar 

  • Van den Berg MJ, Ziegelberger G (1991) On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J Insect Physiol 37:79–85

    Google Scholar 

  • Vermeulen A, Lánsky P, Tuckwell H, Rospars J-P (1997) Coding of odour intensity in a sensory neuron. Biosystems 40:203–210

    PubMed  CAS  Google Scholar 

  • Vijverberg HPM, van der Zalm JM, van den Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature (Lond) 295:601–603

    CAS  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature (Lond) 293:161–163

    CAS  Google Scholar 

  • Vogt RG, Riddiford LM (1986) Pheromone reception: a kinetic equilibrium. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 201–208

    Google Scholar 

  • Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a pheromone degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Nat Acad Sci USA 82:8827–8831

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Hansson SB (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498

    PubMed  Google Scholar 

  • Wicher D, Schaefer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    PubMed  CAS  Google Scholar 

  • Wojtasek H, Leal SW (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem 274:30950–30956

    PubMed  CAS  Google Scholar 

  • Xu W, Leal WS (2008) Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem Biophys Res Commun 372:559–564

    PubMed  CAS  Google Scholar 

  • Xu PX, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200

    PubMed  CAS  Google Scholar 

  • Xu PX, Hooper AM, Pickett JA, Leal WS (2012) Specificity determinants of the silkworm moth sex pheromone. PLoS One 7(9):e44190. doi:101371/journal.pone.0044190

    PubMed  CAS  Google Scholar 

  • Zack C (1979) Sensory adaptation in the sex pheromone receptor cells of saturniid moths. Diss Fak Biol LMU München, pp 1–99

  • Zack-Strausfeld C, Kaissling KE (1986) Localized adaptation processes in olfactory sensilla of Saturniid moths. Chem Senses 11:499–512

    Google Scholar 

  • Zhou Y, Wilson RI (2012) Transduction in Drosophila olfactory receptor neurons is invariant to air speed. J Neurophysiol 108:2051–2059

    PubMed  Google Scholar 

  • Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. JMB 389:529–545

    CAS  Google Scholar 

  • Ziegelberger G (1995) Redox-shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem 232:706–711

    PubMed  CAS  Google Scholar 

  • Ziesmann J, Valterova I, Haberkorn K, De Brito Sanchez MG, Kaissling KE (2000) Chemicals in laboratory room air stimulate olfactory neurons of female Bombyx mori. Chem Senses 25:31–37

    PubMed  CAS  Google Scholar 

  • Zufall F, Hatt H (1991) Dual activation of a sex pheromone-dependent ion channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP. Proc Natl Acad Sci USA 88:8520–8524

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful for help by the librarian A. Krikellis and his team. He thanks J.-P. Rospars for stimulating discussions and constructive criticism, R. A. Steinbrecht, and two referees for valuable suggestions, and A. M. Biederman-Thorson for linguistic improvements of an earlier version of the manuscript. Finally, he thanks John G. Hildebrand for multi-decadic friendship and for carrying Manduca sexta to his lab. Last but not least he wishes to thank F. G. Barth for his careful editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Ernst Kaissling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaissling, KE. Kinetics of olfactory responses might largely depend on the odorant–receptor interaction and the odorant deactivation postulated for flux detectors. J Comp Physiol A 199, 879–896 (2013). https://doi.org/10.1007/s00359-013-0812-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0812-z

Keywords

Navigation