Skip to main content
Log in

IP3-mediated octopamine-induced synaptic enhancement of crayfish LG neurons

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The biogenic amines, octopamine and serotonin, modulate the synaptic activity of the lateral giant interneuron (LG) circuitry of the crayfish escape behavior. Bath application of both octopamine and serotonin enhances the synaptic responses of LG to sensory stimulation. We have shown previously (Araki et al. J Neurophysiol 94:2644–2652, 2005) that a serotonin-induced enhancement of the LG response was mediated by an increase in cAMP levels following activation of adenylate cyclase; however, octopamine acts independently. Here, we clarify how octopamine enhances the LG response during sensory stimulation using physiological and pharmacological analyses. When phospholipase C inhibitor U-73122 was directly injected into the LG before biogenic amine application, it abolished the enhancing effect of octopamine on direct sensory input to the LG, but did not block indirect input via sensory interneurons or the effect of serotonin. Direct injection of IP3, and its analogue adenophostin A, into the LG increased the synaptic response of the LG to sensory stimulation. Thus, IP3 mediates octopamine-induced synaptic enhancement of the LG, but serotonin acts independently. These results indicate that both octopamine and serotonin enhance the synaptic responses of the LG to sensory stimulation, but that they activate two different signaling cascades in the LG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

CaMK:

Ca++/calmodulin-dependent protein kinase

DMSO:

Dimethylsulphoxide

EPSP:

Excitatory postsynaptic potential

IP3 :

Inositol 1,4,5-trisphosphate

LG:

Lateral giant interneuron

OA:

Octopamine

PKA:

Protein kinase A

References

  • Antonsen BL, Paul DH (1997) Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae). J Comp Physiol A 181:501–510

    Article  CAS  Google Scholar 

  • Araki M, Nagayama T (2003) Direct chemically mediated synaptic transmission from mechanosensory afferents contributes to habituation of crayfish lateral giant escape reaction. J Comp Physiol A 189:731–739

    Article  CAS  Google Scholar 

  • Araki M, Nagayama T (2005) Decrease in excitability of LG following habituation of the crayfish escape reaction. J Comp Physiol A 191:481–489

    Article  Google Scholar 

  • Araki M, Nagayama T, Sprayberry J (2005) Cyclic AMP mediates serotonin-induced synaptic enhancement of lateral giant interneuron of the crayfish the crayfish escape reaction. J Neurophysiol 94:2644–2652

    Article  PubMed  CAS  Google Scholar 

  • Baines D, Downer RGH (1994) Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol trisphosphate. Arch Insect Biochem Physiol 26:249–261

    Article  PubMed  CAS  Google Scholar 

  • Blenau W, Baumann A (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38

    Article  PubMed  CAS  Google Scholar 

  • Bremaeker NDe, Dewael Y, Baguet F, Mallefet J (2000) Involvement of cyclic nucleotides and IP3 in the regulation of luminescence in the brittle star Amphipholis squamata (Echinodermata). Luminescence 15:159–163

    Article  PubMed  Google Scholar 

  • Bustamante J, Krasne FB (1991) Effects of octopamine on transmission at the first synapse of the crayfish lateral giant escape reaction pathway. J Comp Physiol A 169:369–377

    Article  Google Scholar 

  • Crocker A, Sehgal A (2008) Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J Neurosci 28:9377–9385

    Article  PubMed  CAS  Google Scholar 

  • Djokaj S, Cooper RL, Rathmayer W (2001) Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187:145–154

    Article  PubMed  CAS  Google Scholar 

  • Dropic AJ, Brailoiu E, Cooper RL (2005) Presynaptic mechanism of action induced by 5-HT in nerve terminals: possible involvement of ryanodine and IP3 sensitive Ca2+ stores. Comp Biochem Physiol A 142:355–361

    Article  Google Scholar 

  • Gerhardt CC, Bakker RA, Piek GJ, Planta RJ, Vreugdenhil E, Leysen JE, van Heerikhuizen H (1997a) Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharm 51:293–300

    CAS  Google Scholar 

  • Gerhardt CC, Lodder HC, Vincent M, Bakker RA, Planta RJ, Vreugdenhil E, Kits KS, van Heerikhuizen H (1997b) Cloning and expression of a complementary DNA encoding a molluscan octopamine receptor that couples to chloride channels in HEK293 cells. J Biol Chem 272:6201–6207

    Article  PubMed  CAS  Google Scholar 

  • Glanzman DL, Krasne FB (1983) Serotonin and octopamine have opposite modulatory effects on the crayfish’s lateral giant escape reaction. J Neurosci 11:2263–2269

    Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156

    PubMed  CAS  Google Scholar 

  • Hildebrandt H, Müller U (1995a) PKA activity in the antennal lobe of honeybees is regulated by chemosensory stimulation in vivo. Brain Res 679:281–288

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt H, Müller U (1995b) Octopamine mediates rapid stimulation of protein kinase A in the antennal lobe of honeybees. J Neurobiol 27:44–50

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Jahagirdar AP, Milton G, Viswanatha T, Downer RGH (1987) Calcium involvement in mediating the action of octopamine and hypertrehalosemic peptides on insect haemocytes. FEBS Lett 219:83–87

    Article  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Krasne FB, Edwards DH (2002) Modulation of the crayfish escape reflex-physiology and Neuroethology. Integ Comp Biol 42:705–715

    Article  Google Scholar 

  • Kravitz EA, Huber R (2003) Aggression in invertebrates. Curr Opin Neurobiol 13:736–743

    Article  PubMed  CAS  Google Scholar 

  • Kruszewska B, Larimer JL (1993) Specific second messengers activate the caudal photoreceptor of crayfish. Brain Res 618:32–40

    Article  PubMed  CAS  Google Scholar 

  • Lee SHC, Taylor K, Krasne FB (2008) Reciprocal stimulation of decay between serotonergic facilitation and depression of synaptic transmission. J Neurophysiol 100:1113–1126

    Article  PubMed  Google Scholar 

  • Lesch KP, Merschdorf U (2000) Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci Law 18:581–604

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS, Harris-Warrick RM, Kravitz EA (1980) Serotonin and octopamine produce opposite postures in lobsters. Science 208:76–79

    Article  PubMed  CAS  Google Scholar 

  • Mak D-OD, McBride S, Foskett JK (2001) ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. J Gen Physiol 117:299–314

    Article  PubMed  CAS  Google Scholar 

  • Müller U (1997) Neuronal cAMP-dependent protein kinase type II is concentrated in mushroom bodies of Drosophila melanogaster and the honeybee Apis mellifera. J Neurobiol 33:33–44

    Article  PubMed  Google Scholar 

  • Nagayama T (2002) Serotonergic modulation of non-spiking local interneurons in the terminal abdominal ganglion of the crayfish. J Exp Biol 205:3067–3076

    PubMed  CAS  Google Scholar 

  • Newland PL, Aonuma H, Nagayama T (1997) Monosynaptic excitation of lateral giant fibres by proprioceptive afferents in the crayfish. J Comp Physiol A 181:103–109

    Article  Google Scholar 

  • Pitt S, Vehovszky A, Szabo H, Elliott CJ (2004) Second messengers of octopamine receptor in the snail Lymnaea. Acta Biol Hung 55:177–183

    Article  PubMed  CAS  Google Scholar 

  • Real D, Czternasty G (1990) Mapping of serotonin-like immunoreactivity in the ventral verve cord of crayfish. Brain Res 521:203–212

    Article  PubMed  CAS  Google Scholar 

  • Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 13:1325–1330

    PubMed  CAS  Google Scholar 

  • Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561

    Article  PubMed  CAS  Google Scholar 

  • Sáez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MVL (1990) Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Eur J Biochem 192:263–273

    Article  PubMed  Google Scholar 

  • Schneider H, Trimmer BA, Rapus J, Eckert M, Valentine DE, Kravitz EA (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 329:129–142

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14

    Article  PubMed  CAS  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    PubMed  CAS  Google Scholar 

  • Teshiba T, Shamsian A, Yashar B, Yeh S-R, Edwards DH, Krasne FB (2001) Dual and opposing modulatory effects of serotonin on crayfish lateral giant escape command neurons. J Neurosci 21:4523–4529

    PubMed  CAS  Google Scholar 

  • Torkkeli PH, Panek I, Meisner S (2011) Ca2+/calmodulin-dependent protein kinase II mediates the octopamine-induced increase in sensitivity in spider VS-3 mechanosensory neurons. Eur J Neurosci 33:1186–1196

    Article  PubMed  Google Scholar 

  • Van Harreveld A (1936) A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med 34:428–432

    Google Scholar 

  • Von Nickisch-Rosenegk E, Krieger J, Kubick S, Laage R, Strobel J, Strotmann J, Breer H (1996) Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens). Insect Biochem Mol Biol 26:817–827

    Article  Google Scholar 

  • Weiger WA (1997) Serotonergic modulation of behaviour: a phylogenetic overview. Biol Rev Camb Philos Soc 72:61–95

    Article  PubMed  CAS  Google Scholar 

  • Wine JJ, Krasne FB (1972) The organization of escape behaviour in the crayfish. J Exp Biol 56:1–18

    PubMed  CAS  Google Scholar 

  • Yeh S-R, Fricke RA, Edwards DH (1996) The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271:366–369

    Article  PubMed  CAS  Google Scholar 

  • Yeh S-R, Musolf BE, Edwards DH (1997) Neuronal adaptations to changes in the social dominance status of crayfish. J Neurosci 17:697–708

    PubMed  CAS  Google Scholar 

  • Yule DI, Williams JA (1992) U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem 267:13825–13830

    Google Scholar 

  • Zucker RS (1972) Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J Neurophysiol 35:621–637

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sport, and Culture to T.N. All experiments were carried out in accordance with the Guide for the care and use of Laboratory animals of Yamagata University (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Nagayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, M., Nagayama, T. IP3-mediated octopamine-induced synaptic enhancement of crayfish LG neurons. J Comp Physiol A 198, 607–615 (2012). https://doi.org/10.1007/s00359-012-0733-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0733-2

Keywords

Navigation