Skip to main content
Log in

Analysis of GABA-induced inhibition of spontaneous firing in chick accessory lobe neurons

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

It has been hypothesized that chick accessory lobes (ALs) contain functional neurons and act as a sensory organ of equilibrium. It was reported that neurons located in an outer layer of ALs showed γ-aminobutyric acid (GABA)- and glutamic acid decarboxylase (GAD)-like immunoreactivity more strongly than centrally located neurons, which were surrounded by the GAD-immunoreactive terminals. We investigated effects of GABA on the electrical activity of AL neurons. About 50% of embryonic AL neurons exhibited spontaneous firing. In the on-cell recording, GABA, muscimol, and GABA in combination with CGP35348 inhibited this firing. In whole-cell voltage clamp recordings, GABA and muscimol evoked a transient current. The mean reversal potential of GABA-evoked currents was close to the theoretical reversal potential of Cl. These results indicate that GABA exerts the inhibitory effect on the firing through the activation of GABAA receptors. In addition, the intracellular concentration of Cl was estimated to be about 16 mM in measurements with the gramicidin-perforated configuration, indicating the physiological reversal potential of the GABA current was about −60 mV. In conclusion, AL neurons have an intrinsic mechanism to evoke the spontaneous firing, which can be arrested by the inhibitory mechanism through the activation of the GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AL:

Accessory lobe

CV:

Coefficient of variation

GAD:

Glutamic acid decarboxylase

ISI:

Interspike interval

NMDG:

N-Methyl-d-glutamine

TTX:

Tetrodotoxin

References

  • Akaike N (1996) Gramicidin perforated patch recording and intracellular chloride activity in excitable cells. Prog Biophys Mol Biol 65:251–264

    Article  PubMed  CAS  Google Scholar 

  • Antal M, Puskár Z, Birinyi A, Storm-Mathisen J (2000) Development, neurochemical properties, and axonal projections of a population of last-order premotor interneurons in the white matter of the chick lumbosacral spinal cord. J Exp Zool 286:157–172

    Article  PubMed  CAS  Google Scholar 

  • Chub N, O’Donovan MJ (1998) Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J Neurosci 18:294–306

    PubMed  CAS  Google Scholar 

  • Decker JD (1970) The influence of early extirpation of the otocysts on development of behavior of the chick. J Exp Zool 174:349–363

    Article  PubMed  CAS  Google Scholar 

  • du Lac S, Lisberger SG (1992) Eye movements and brainstem neuronal responses evoked by cerebellar and vestibular stimulation in chicks. J Comp Physiol A 171:629–638

    PubMed  CAS  Google Scholar 

  • du Lac S, Lisberger SG (1995) Cellular processing of temporal information in medial vestibular nucleus neurons. J Neurosci 15:8000–8010

    PubMed  CAS  Google Scholar 

  • Eide AL (1996) The axonal projections of the Hofmann nuclei in the spinal cord of the late stage chicken embryo. Anat Embryol (Berl) 193:543–557

    Article  CAS  Google Scholar 

  • Eide AL, Glover JC (1996) Development of an identified spinal commissural interneuron population in an amniote: neurons of the avian Hofmann nuclei. J Neurosci 16:5749–5761

    PubMed  CAS  Google Scholar 

  • Fedirchuk B, Wenner P, Whelan PJ, Ho S, Tabak J, O’Donovan MJ (1999) Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. J Neurosci 19:2102–2112

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:26

    Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  PubMed  CAS  Google Scholar 

  • Hoagland H (1932) Impulses from sensory nerves of catfish. Proc Natl Acad Sci USA 18:701–705

    Article  PubMed  CAS  Google Scholar 

  • Howard MA, Burger RM, Rubel EW (2007) A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents. J Neurosci 27:2112–2123

    Article  PubMed  CAS  Google Scholar 

  • Hyson RL, Reyes AD, Rubel EW (1995) A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick. Brain Res 677:117–126

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Jones SM (2000) Spontaneous activity in the statoacoustic ganglion of the chicken embryo. J Neurophysiol 83:1452–1468

    PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kölliker A (1902) Über die oberflächlichen Nervenkerne im Marke der Vögel und Reptilien. Z Wiss Zool 72:126–180

    Google Scholar 

  • Lachi P (1889) Alcune particolarita anatomiche del rigonfiamento sacrale nel midollo degli uccelli. Lobi accessori. Att Soc Tosc Sci Nat 10:268–295

    Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23

    Article  PubMed  CAS  Google Scholar 

  • Milinski T, Necker R (2001) Histochemical and immunocytochemical investigations of the marginal nuclei in the spinal cord of pigeons (Columba livia). Brain Res Bull 56:15–21

    Article  PubMed  CAS  Google Scholar 

  • Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19:3007–3022

    PubMed  CAS  Google Scholar 

  • Necker R (1997) Projections of the marginal nuclei in the spinal cord of the pigeon. J Comp Neurol 377:95–104

    Article  PubMed  CAS  Google Scholar 

  • Necker R (1999) Specializations in the lumbosacral spinal cord of birds: morphological and behavioural evidence for a sense of equilibrium. Eur J Morphol 37:211–214

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2002) Mechanosensitivity of spinal accessory lobe neurons in the pigeon. Neurosci Lett 320:53–56

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2004) Histological and immunocytochemical characterization of neurons located in the white matter of the spinal cord of the pigeon. J Chem Neuroanat 27:109–117

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2005a) Are paragriseal cells in the avian lumbosacral spinal cord displaced ventral spinocerebellar tract neurons? Neurosci Lett 382:56–60

    Article  PubMed  CAS  Google Scholar 

  • Necker R (2005b) The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium. Anat Embryol (Berl) 210:59–74

    Article  CAS  Google Scholar 

  • Necker R (2006) Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:439–448

    Article  PubMed  Google Scholar 

  • Necker R, Janßen A, Beissenhirtz T (2000) Behavioral evidence of the role of lumbosacral anatomical specializations in pigeons in maintaining balance during terrestrial locomotion. J Comp Physiol A 186:409–412

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg J, Necker R (2000) Fine structural evidence of mechanoreception in spinal lumbosacral accessory lobes of pigeons. Neurosci Lett 285:13–16

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg J, Necker R (2002) Ultrastructural characterization of the accessory lobes of Lachi in the lumbosacral spinal cord of the pigeon with special reference to intrinsic mechanoreceptors. J Comp Neurol 447:274–285

    Article  PubMed  Google Scholar 

  • Schmitt DE, Hill RH, Grillner S (2004) The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network. J Neurophysiol 92:2357–2367

    Article  PubMed  CAS  Google Scholar 

  • Shao M, Hirsch JC, Peusner KD (2006) Maturation of firing pattern in chick vestibular nucleus neurons. Neuroscience 141:711–726

    Article  PubMed  CAS  Google Scholar 

  • Tabak J, Senn W, O’Donovan MJ, Rinzel J (2000) Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J Neurosci 20:3041–3056

    PubMed  CAS  Google Scholar 

  • Wallman J, Velez J, Weinstein B, Green AE (1982) Avian vestibuloocular reflex: adaptive plasticity and developmental changes. J Neurophysiol 48:952–967

    PubMed  CAS  Google Scholar 

  • Yamanaka Y, Kitamura N, Shibuya I (2008) Chick spinal accessory lobes contain functional neurons expressing voltage-gated sodium channels generating action potentials. Biomed Res 29:205–211

    Article  PubMed  CAS  Google Scholar 

  • Yang CX, Xu H, Zhou KQ, Wang MY, Xu TL (2006) Modulation of gamma-aminobutyric acid A receptor function by thiopental in the rat spinal dorsal horn neurons. Anesth Analg 102:1114–1120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by KAKENHI (Grant #: 16780200, 18380175) and Grant-in-Aid for JSPS Fellows. The animal experiments were performed in accordance with the guidelines stipulated by the ethical committee of Tottori University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Kitamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, Y., Kitamura, N., Shinohara, H. et al. Analysis of GABA-induced inhibition of spontaneous firing in chick accessory lobe neurons. J Comp Physiol A 198, 229–237 (2012). https://doi.org/10.1007/s00359-011-0703-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0703-0

Keywords

Navigation