Skip to main content
Log in

GABAergic Interneurons are Required for Generation of Slow CA1 Oscillation in Rat Hippocampus

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuronal oscillations are fundamental to hippocampal function. It has been shown that GABAergic interneurons make an important contribution to hippocampal oscillations, but the underlying mechanism is not well understood. Here, using whole-cell recording in the complete hippocampal formation isolated from rats at postnatal days 14–18, we showed that GABAA receptor-mediated activity enhanced the generation of slow CA1 oscillations. In vitro, slow oscillations (0.5–1.5 Hz) were generated in CA1 neurons, and they consisted primarily of excitatory rather than inhibitory membrane-potential changes. These oscillations were greatly reduced by blocking GABAA receptor-mediated activity with bicuculline and were enhanced by increasing such activity with midazolam, suggesting that interneurons are required for oscillation generation. Consistently, CA1 fast-spiking interneurons were found to generate action potentials usually preceding those in CA1 pyramidal cells. These findings indicate a GABAA receptor-based mechanism for the generation of the slow CA1 oscillation in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Axmacher N, Mormann F, Fernandez G, Elger CE, Fell J. Memory formation by neuronal synchronization. Brain Res Rev 2006, 52: 170–182.

    Article  PubMed  Google Scholar 

  2. Bissiere S, Zelikowsky M, Ponnusamy R, Jacobs NS, Blair HT, Fanselow MS. Electrical synapses control hippocampal contributions to fear learning and memory. Science 2011, 331: 87–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang DV, Yau H-J, Broker CJ, Tsou J-H, Bonci A, Ikemoto S. Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation. Nat Neurosci 2015, 18: 728–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marshall L, Helgadottir H, Moelle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature 2006, 444: 610–613.

    Article  CAS  PubMed  Google Scholar 

  5. Ku Y, Bodner M, Zhou YD. Prefrontal cortex and sensory cortices during working memory: quantity and quality. Neurosci Bull 2015, 31: 175–182.

    Article  PubMed  Google Scholar 

  6. Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 1999, 19: 274–287.

    CAS  PubMed  Google Scholar 

  7. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus 1996, 6: 347–470.

    Article  CAS  PubMed  Google Scholar 

  8. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1995, 378: 75–78.

    Article  CAS  PubMed  Google Scholar 

  9. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008, 321: 53–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukuda T, Kosaka T. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neuorsci 2000, 20: 1519–1528.

    CAS  Google Scholar 

  11. Tamas G, Buhl EH, Lorincz A, Somogyi P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 2000, 3: 366–371.

    Article  CAS  PubMed  Google Scholar 

  12. Mann EO, Paulsen O. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 2007, 30: 343–349.

    Article  CAS  PubMed  Google Scholar 

  13. Allen K, Monyer H. Interneuron control of hippocampal oscillations. Curr Opin Neurobiol 2015, 31: 81–87.

    Article  CAS  PubMed  Google Scholar 

  14. Roux L, Buzsaki G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology 2015, 88: 10–23.

    Article  CAS  PubMed  Google Scholar 

  15. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 2009, 326: 1419–1424.

    Article  CAS  PubMed  Google Scholar 

  16. Quilichini PP, Le Van Quyen M, Ivanov A, Turner DA, Carabalona A, Gozlan H, et al. Hub GABA neurons mediate gamma-frequency oscillations at ictal-like event onset in the immature hippocampus. Neuron 2012, 74: 57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Picardo MA, Guigue P, Bonifazi P, Batista-Brito R, Allene C, Ribas A, et al. Pioneer GABA cells comprise a subpopulation of hub neurons in the developing hippocampus. Neuron 2011, 71: 695–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 2010, 68: 557–569.

    Article  CAS  PubMed  Google Scholar 

  19. Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FEN, Bannerman DM, et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 2007, 53: 591–604.

    Article  CAS  PubMed  Google Scholar 

  20. Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Baehner F, et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 2009, 106: 3561–3566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caputi A, Fuchs EC, Allen K, Le Magueresse C, Monyer H. Selective reduction of AMPA currents onto hippocampal interneurons impairs network Oscillatory Activity. PLoS One 2012, 7: e37318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 2012, 15: 769–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G. Inhibition-induced theta resonance in cortical circuits. Neuron 2013, 80: 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  24. Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsaki G. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 2014, 83: 467–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goutagny R, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus. Nat Neurosci 2009, 12: 1491–1493.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Xu NL, Wu CP, Duan S, Poo MM. Bidirectional changes in spatial dendritic integration accompanying long-term synaptic modifications. Neuron 2003, 37: 463–472.

    Article  CAS  PubMed  Google Scholar 

  27. Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa JL. gamma-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog Brain Res 1994, 102: 261–273.

    Article  CAS  PubMed  Google Scholar 

  28. Lujan R, Shigemoto R, Lopez-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience 2005, 130: 567–580.

    Article  CAS  PubMed  Google Scholar 

  29. Fregnac Y. Dynamics of functional connectivity in visual cortical networks: an overview. J Physiol Paris 1996, 90: 113–139.

    Article  CAS  PubMed  Google Scholar 

  30. Roudi Y, Dunn B, Hertz J. Multi-neuronal activity and functional connectivity in cell assemblies. Curr Opin Neurobiol 2015, 32: 38–44.

    Article  CAS  PubMed  Google Scholar 

  31. Chavas J, Marty A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci 2003, 23: 2019–2031.

    CAS  PubMed  Google Scholar 

  32. Gulledge AT, Stuart GJ. Excitatory actions of GABA in the cortex. Neuron 2003, 37: 299–309.

    Article  CAS  PubMed  Google Scholar 

  33. Cossart R, Bernard C, Ben-Ari Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci 2005, 28: 108–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (91132711; 30970960; 31471078), a Key Scientific Project of the Shanghai Science and Technology Commission, China (15JC1400102), and the Shanghai Pu-Jiang Program, China (08PJ14044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiru Wang.

Additional information

Yuan Xu and Lidan Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, L., Liu, Yz. et al. GABAergic Interneurons are Required for Generation of Slow CA1 Oscillation in Rat Hippocampus. Neurosci. Bull. 32, 363–373 (2016). https://doi.org/10.1007/s12264-016-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0049-2

Keywords

Navigation