Skip to main content
Log in

Neural control of olfaction and tentacle movements by serotonin and dopamine in terrestrial snail

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We investigated the role of serotonin (5HT) and dopamine (DA) in the regulation of olfactory system function and odor-evoked tentacle movements in the snail Helix. Preparations of the posterior tentacle (including sensory pad, tentacular ganglion and olfactory nerve) or central ganglia with attached posterior tentacles were exposed to cineole odorant and the evoked responses were affected by prior application of 5HT or DA or their precursors 5-hydroxytryptophan (5HTP) and l-DOPA, respectively. 5HT applications decreased cineole-evoked responses recorded in the olfactory nerve and hyperpolarized the identified tentacle retractor muscle motoneuron MtC3, while DA applications led to the opposite changes. 5HTP and l-DOPA modified MtC3 activity comparable to 5HT and DA action. DA was also found to decrease the amplitude of spontaneous local field potential oscillations in the procerebrum, a central olfactory structure. In vivo studies demonstrated that injection of 5HTP in freely moving snails reduced the tentacle withdrawal response to aversive ethyl acetate odorant, whereas the injection of l-DOPA increased responses to “neutral” cineole and aversive ethyl acetate odorants. Our data suggest that 5HT and DA affect the peripheral (sensory epithelium and tentacular ganglion), the central (procerebrum), and the single motor neuron (withdrawal motoneuron MtC3) level of the snail’s nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5HT:

Serotonin

5HTP:

5-hydroxy-l-tryptophan

DA:

Dopamine

l-DOPA:

3,4-Dihydroxy-l-phenylalanine

LFP:

Local field potential

MtC3:

Identified metacerebral neuron #3

References

  • Balaban PM (2002) Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci Biobehav Rev 26(5):597–630

    Article  PubMed  CAS  Google Scholar 

  • Brunelli M, Castellucci V, Kandel ER (1976) Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194(4270):1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Chase R (1986) Lessons from snail tentacles. Chem Senses 11:411–426

    Article  Google Scholar 

  • Chase R, Hall B (1996) Nociceptive inputs to C3, a motoneuron of the tentacle withdrawal reflex in Helix aspersa. J Comp Physiol A 179:809–818

    Article  CAS  Google Scholar 

  • Chistopol’skii IA, Sakharov DA (2003) Non-synaptic integration of the cell bodies of neurons into the central nervous system of the snail. Neurosci Behav Physiol 33(3):295–300

    Article  PubMed  Google Scholar 

  • Chistyakova MV (1990) Role of dopamine and serotonin in modulation of snail defensive behavior. Neurosci Behav Physiol 20(5):446–452

    Article  PubMed  CAS  Google Scholar 

  • Cottrell G, Schot L, Dockray G (1983) Identification and probable role of a single neurone containing the neuropeptide Helix FMRFamide. Nature 304(5927):638–640

    Article  PubMed  CAS  Google Scholar 

  • Dale B (1973) Blood pressure and its hydraulic functions in Helix pomatia L. J Exp Biol 59:477–490

    Google Scholar 

  • Dyakonova VE, Chistopolsky IA, Dyakonova TL, Vorontsov DD, Sakharov DA (2009) Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(6):515–527

    Article  PubMed  CAS  Google Scholar 

  • Elekes K (1991) Serotonin-immunoreactive varicosities in the cell body region and neural sheath of the snail, Helix pomatia, ganglia: an electron microscopic immunocytochemical study. Neuroscience 42(2):583–591

    Article  PubMed  CAS  Google Scholar 

  • Elliott CJ, Susswein AJ (2002) Comparative neuroethology of feeding control in molluscs. J Exp Biol 205(Pt 7):877–896

    PubMed  CAS  Google Scholar 

  • Fickbohm DJ, Spitzer N, Katz PS (2005) Pharmacological manipulation of serotonin levels in the nervous system of the opisthobranch mollusc Tritonia diomedea. Biol Bull 209(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Galanina GN, Zakharov IS, Maksimova OA, Balaban PM (1986) Role of the giant serotonin-containing cell of the cerebral ganglion in the edible snail in organizing its food-acquiring behavior. Zh Vyssh Nerv Deiat Im I P Pavlova 36(1):110–115 (in Russian)

    PubMed  CAS  Google Scholar 

  • Gelperin A, Rhines LD, Flores J, Tank DW (1993) Coherent network oscillations by olfactory interneurons: modulation by endogenous amines. J Neurophysiol 69(6):1930–1939

    PubMed  CAS  Google Scholar 

  • Hernadi L (2000) Topographic organization of efferent neurons with different neurochemical characters in the cerebral ganglia of the snail Helix pomatia. Microsc Res Tech 49(6):521–533

    Article  PubMed  CAS  Google Scholar 

  • Hernadi L, Elekes K (1999) Topographic organization of serotonergic and dopaminergic neurons in the cerebral ganglia and their peripheral projection patterns in the head areas of the snail Helix pomatia. J Comp Neurol 411(2):274–287

    Article  PubMed  CAS  Google Scholar 

  • Hernadi L, Hiripi L, Gyori J, Szabo H, Vehovszky A (2008) The terrestrial snail, Helix pomatia, adapts to environmental conditions by the modulation of central arousal. Acta Biol Hung 59 (Suppl):47–53

    Article  Google Scholar 

  • Ierusalimskii VN, Zakharov IS, Balaban PM (1997) A comparison of serotonin- and dopaminergic neuronal systems in sexually mature and juvenile terrestrial mollusks of the genera Helix and Eobania. Zh Vyssh Nerv Deiat Im I P Pavlova 47(3):563–576 (in Russian)

    PubMed  CAS  Google Scholar 

  • Inokuma Y, Inoue T, Watanabe S, Kirino Y (2002) Two types of network oscillations and their odor responses in the primary olfactory center of a terrestrial mollusk. J Neurophysiol 87(6):3160–3164

    PubMed  Google Scholar 

  • Inoue T, Watanabe S, Kirino Y (2001) Serotonin and NO complementarily regulate generation of oscillatory activity in the olfactory CNS of a terrestrial mollusk. J Neurophysiol 85(6):2634–2638

    PubMed  CAS  Google Scholar 

  • Inoue T, Inokuma Y, Watanabe S, Kirino Y (2004) In vitro study of odor-evoked behavior in a terrestrial mollusk. J Neurophysiol 91(1):372–381

    Article  PubMed  Google Scholar 

  • Inoue T, Murakami M, Watanabe S, Inokuma Y, Kirino Y (2006) In vitro odor-aversion conditioning in a terrestrial mollusk. J Neurophysiol 95(6):3898–3903

    Article  PubMed  Google Scholar 

  • Ito I, Watanabe S, Kimura T, Kirino Y, Ito E (2003) Negative relationship between odor-induced spike activity and spontaneous oscillations in the primary olfactory system of the terrestrial slug Limax marginatus. Zoolog Sci 20(11):1327–1335

    Article  PubMed  Google Scholar 

  • Kabotyanski EA, Baxter DA, Cushman SJ, Byrne JH (2000) Modulation of fictive feeding by dopamine and serotonin in Aplysia. J Neurophysiol 83(1):374–392

    PubMed  CAS  Google Scholar 

  • Kerkut GA, Sedden CB, Walker RJ (1966) The effect of DOPA, alpha-methyldopa and reserpine on the dopamine content of the brain of the snail, Helix aspersa. Comp Biochem Physiol 18(4):921–930

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Delaney KR, Fee MS, Flores JA, Tank DW, Gelperin A (1994) Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study. J Neurophysiol 72(3):1402–1419

    PubMed  CAS  Google Scholar 

  • Maksimova OA, Bravarenko NI, Balaban PM (1999) Two modulatory inputs exert reciprocal reinforcing effects on synaptic input of premotor interneurons for withdrawal in terrestrial snails. Learn Mem 6(2):168–176

    PubMed  CAS  Google Scholar 

  • McCaman MW, Ono JK, McCaman RE (1984) 5-hydroxytryptamine measurements in molluscan ganglia and neurons using a modified radioenzymatic assay. J Neurochem 43(1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Nikitin ES, Balaban PM (2000) Optical recording of odor-evoked responses in the olfactory brain of the naive and aversively trained terrestrial snails. Learn Mem 7(6):422–432

    Article  PubMed  CAS  Google Scholar 

  • Nikitin ES, Zakharov IS, Samarova EI, Kemenes G, Balaban PM (2005) Fine tuning of olfactory orientation behaviour by the interaction of oscillatory and single neuronal activity. Eur J Neurosci 22(11):2833–2844

    Article  PubMed  Google Scholar 

  • Nikitin ES, Korshunova TA, Zakharov IS, Balaban PM (2008) Olfactory experience modifies the effect of odour on feeding behaviour in a goa\related manner. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Prescott SA, Gill N, Chase R (1997) Neural circuit mediating tentacle withdrawal in Helix aspersa, with specific reference to the competence of the motor neuron C3. J Neurophysiol 78(6):2951–2965

    PubMed  CAS  Google Scholar 

  • Rhines LD, Sokolove PG, Flores J, Tank DW, Gelperin A (1993) Cultured olfactory interneurons from Limax maximus: optical and electrophysiological studies of transmitter-evoked responses. J Neurophysiol 69(6):1940–1947

    PubMed  CAS  Google Scholar 

  • Rozsa K, Perenyi L (1966) Chemical identification of the excitatory substance released in Helix heart during stimulation of the extracardial nerve. Comp Biochem Physiol 19:105–113

    Article  PubMed  CAS  Google Scholar 

  • Samarova EI, Balaban PM (2006) Recording of spontaneous oscillations in the procerebrum of terrestrial mollusk Helix in free behavior. Zh Vyssh Nerv Deiat Im I P Pavlova 56(6):725–730

    PubMed  CAS  Google Scholar 

  • Samarova E, Balaban P (2009) Changes in frequency of spontaneous oscillations in procerebrum correlate to behavioural choice in terrestrial snails. Front Cell Neurosci 3:8

    Article  PubMed  Google Scholar 

  • Voss M (2000) Neurophysiological and behavioral responses to olfactory stimuli in the snail Helix pomatia L. Physiol Res 49(4):463–469

    PubMed  CAS  Google Scholar 

  • Wieland SJ, Gelperin A (1983) Dopamine elicits feeding motor program in Limax maximus. J Neurosci 3(9):1735–1745

    PubMed  CAS  Google Scholar 

  • Zakharov IS, Mats VN, Balaban PM (1983) Role of the giant cerebral neuron in control of defensive behavior of Helix lucorum. Neurophysiologia 14:262–266

    Article  Google Scholar 

  • Zakharov IS, Ierusalimsky VN, Balaban PM (1995) Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons of Helix. Invert Neurosci 1:41–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to R. Boyle, E.S. Nikitin, A.Y. Malyshev, I.S. Zakharov, and T.A. Korshunova for discussions and help in experiments. This study was supported by grants from Russian Foundation for Basic Research, Council for Grants of the President of RF, Program of Physiology Division of Russian Academy of Sciences, and Federal Program of Russian Ministry of Education and Science. The Ethics Commission of Institute of Higher Nervous Activity, Russian Academy of Sciences, approved the experimental protocol. Experimental procedures are in compliance with the Guide for the care and use of Laboratory animals published by the National Institutes of Health (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel M. Balaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roshchin, M., Balaban, P.M. Neural control of olfaction and tentacle movements by serotonin and dopamine in terrestrial snail. J Comp Physiol A 198, 145–158 (2012). https://doi.org/10.1007/s00359-011-0695-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0695-9

Keywords

Navigation