Skip to main content

Advertisement

Log in

A neural basis for gyroscopic force measurement in the halteres of Holorusia

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Dipteran flight requires rapid acquisition of mechanosensory information provided by modified hindwings known as halteres. Halteres experience torques resulting from Coriolis forces that arise during body rotations. Although biomechanical and behavioral data indicate that halteres detect Coriolis forces, there are scant data regarding neural encoding of these or any other forces. Coriolis forces arise on the haltere as it oscillates in one plane while rotating in another, and occur at oscillation frequency and twice the oscillation frequency. Using single-fiber recordings of haltere primary afferent responses to mechanical stimuli, we show that spike rate increases linearly with stimulation frequency up to 150 Hz, much higher than twice the natural oscillation frequency of 40 Hz. Furthermore, spike-timing precision is extremely high throughout the frequency range tested. These characteristics indicate that afferents respond with high speed and high precision, neural features that are useful for detecting Coriolis forces. Additionally, we found that neurons respond preferentially to specific stimulus directions, with most responding more strongly to stimulation in the orthogonal plane. Directional sensitivity, coupled with precise, high-speed encoding, suggests that haltere afferents are capable of providing information about forces occurring at the haltere base, including Coriolis forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arnaud P, Byers G (1990) Holorusia hespera, a new name for Holorusia grandis (Bergroth) (=Holorusia rubiginosa Loew) (Diptera: Tipulidae). Myia 5:1–9

    Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Bender J, Dickinson M (2006) A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster. J Exp Biol 209:4597–4606

    Article  PubMed  Google Scholar 

  • Berry M, Warland D, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci 94(10):5411–5416

    Article  PubMed  CAS  Google Scholar 

  • Brodsky A (1994) The evolution of insect flight. Oxford University Press, Oxford

    Google Scholar 

  • Carr C (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243

    Article  PubMed  CAS  Google Scholar 

  • Chan W, Dickinson M (1996) Position-specific central projections of mechanosensory neurons on the haltere of the blowfly, Calliphora vicina. J Comp Neurol 369(3):405–418

    Article  PubMed  CAS  Google Scholar 

  • Cole ES, Palka J (1982) The pattern of campaniform sensilla on the wing and haltere of Drosophila melanogaster and several of its homeotic mutants. J Embryol Exp Morph 71:41–61

    PubMed  CAS  Google Scholar 

  • Derham W (1714) Physico-theology (Boyle lecture for 1711). W Innys, London

    Google Scholar 

  • Dickinson M (1990) Linear and nonlinear encoding properties of an identified mechanoreceptor on the fly wing measured with mechanical noise stimuli. J Exp Biol 151:219–244

    Google Scholar 

  • Dickinson M (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos Trans R Soc Lond B 354(1385):903–916

    Article  CAS  Google Scholar 

  • Fayyazuddin A, Dickinson M (1996) Haltere afferents provide direct, electrotonic input to a steering motor neuron in the blowfly, Calliphora. J Neurosci 16(16):5225–5232

    PubMed  CAS  Google Scholar 

  • Fayyazuddin A, Dickinson M (1999) Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly, Calliphora. J Neurophysiol 82(4):1916–1926

    PubMed  CAS  Google Scholar 

  • Gnatzy W, Grünert U, Bender M (1987) Campaniform sensilla of Calliphora vincina (Insecta, Diptera). I. Topography. Zoomorphology 106:312–319

    Article  Google Scholar 

  • Goldberg J, Brown P (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32(4):613–636

    PubMed  CAS  Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) Biona report II: insect flight. Fischer, Stuttgart, pp 35–52

    Google Scholar 

  • Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala. J Comp Physiol A 163(2):151–165

    Article  Google Scholar 

  • Höger U, French AS (1999) Temperature sensitivity of transduction and action potential conduction in a spider mechanoreceptor. Eur J Physiol 438(6):837–842

    Article  Google Scholar 

  • Hopkins C (1986) Temporal structure of non-propagated electric communication signals. Brain Behav Evol 28(1–3):43–59

    Article  PubMed  CAS  Google Scholar 

  • Hopkins C, Bass A (1981) Temporal coding of species recognition signals in an electric fish. Science 212(4490):85–87

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E, O’Carroll D, Anderson J, Laughlin S (2000) Sexual dimorphism matches photoreceptor performance to behavioural requirements. Proc Biol Sci 267(1457):2111–2117

    Article  PubMed  CAS  Google Scholar 

  • Johnson D (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68(4):1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17(9):3312–3321

    PubMed  Google Scholar 

  • Land MF, Collett TS (1974) Chasing behavior in the housefly, Fannia cannicularis. J Comp Physiol 89(4):331–357

    Article  Google Scholar 

  • Lei H, Christensen T, Hildebrand J (2004) Spatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe. J Neurosci 24(49):11108–11119

    Article  PubMed  CAS  Google Scholar 

  • Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268(5216):1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Nalbach G (1993) The halteres of the blowfly Calliphora 1. Kinematics and dynamics. J Comp Physiol 173:293–300

    Article  Google Scholar 

  • Pflugstaedt H (1912) Die Halteren der Dipteren. Z Wiss Zool 100:1–59

    Google Scholar 

  • Pringle J (1948) The gyroscopic mechanism of the halteres of Diptera. Phil Trans R Soc Lond 133(602):347–348

    Google Scholar 

  • Rokem A, Watzl S, Gollisch T, Stemmler M, Herz A, Samengo I (2006) Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J Neurophysiol 95(4):2541–2552

    Article  PubMed  Google Scholar 

  • Rose G, Capranica R (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465

    PubMed  CAS  Google Scholar 

  • Sandeman DC, Markl H (1980) Head movements in flies (Calliphora) produced by deflexion of the halteres. J Exp Biol 85:43–60

    Google Scholar 

  • Sane SP, Dieudonne A, Willis M, Daniel TL (2007) Antennal mechanosensors mediate flight control in moths. Science 315(5813):863–866

    Article  PubMed  CAS  Google Scholar 

  • Sherman A, Dickinson M (2003) A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J Exp Biol 206:295–302

    Article  PubMed  Google Scholar 

  • Sisneros J, Bass A (2003) Seasonal plasticity of peripheral auditory frequency sensitivity. J Neurosci 23(3):1049–1058

    PubMed  CAS  Google Scholar 

  • Smith D (1969) The fine structure of haltere sensilla in the blowfly, Calliphora erythrocephala, with scanning electron microscopic observations on the haltere surface. Tissue Cell 1(3):443–484

    Article  PubMed  CAS  Google Scholar 

  • Taylor GK, Krapp HG (2008) Sensory systems and flight stability: What do insects measure and why? In: Casas J, Simpson SJ (eds) Advances in insect physiology, vol 34. Academic Press, Burlington, pp 231–316

    Google Scholar 

  • Tammero L, Dickinson M (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205:327–343

    PubMed  Google Scholar 

  • Thurm U, Stedtler A, Foelix R (1974) Reizwirksame Verformungen der Terminalstrukturen eines Mechanorezeptors. Verh Dtsch Zool Ges 67:37–41

    Google Scholar 

  • Trimarchi JR, Murphey RK (1997) The shaking-B2 mutation disrupts electrical synapses in a flight circuit in adult Drosophila. J Neurosci 17(12):4700–4710

    PubMed  CAS  Google Scholar 

  • Tu MS, Dickinson MH (1996) The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J Comp Physiol A 178(6):813–830

    Article  PubMed  CAS  Google Scholar 

  • Warrant E (1999) Seeing better at night: life style, eye design, and the optimum strategy of spatial and temporal summation. Vis Res 39:1611–1630

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Wai Pang Chan for helpful comments and imaging assistance, Alexandre Dieudonné for advice on experiments, and Doug Ewing and the Nielsen family for crane fly collection. We also thank Michael Dickinson for valuable commentary on the manuscript. All experiments complied with the “Principles of animal care”, publication no. 86–23, revised 1985 of the National Institute of Health. Support was provided by the Komen Endowed Chair and a grant from the Air Force Office of Scientific Research to TLD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J.L., Daniel, T.L. A neural basis for gyroscopic force measurement in the halteres of Holorusia . J Comp Physiol A 194, 887–897 (2008). https://doi.org/10.1007/s00359-008-0361-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0361-z

Keywords

Navigation