Skip to main content
Log in

The optokinetic response in wild type and white zebra finches

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Optic flow is a main source of information about self movement and the three-dimensional composition of the environment during locomotion. It is processed by the accessory optic system in all vertebrates. The optokinetic response is elicited by rotational optic flow, e.g. in a rotating drum lined with vertical stripes. We investigated here the effect of rotational optic flow on the optokinetic response in wild type and white zebra finches. The highest stimulus velocity eliciting an optokinetic response (upper velocity threshold) was dependent on stimulus direction and illumination level, but was not different between the colour morphs. The upper velocity threshold was higher with temporal to nasal movements in monocularly exposed birds and symmetrical with binocular exposure. Its increase with illumination level followed Fechner’s law and reached a plateau at about 560 Lux. In bright daylight, white birds did not show optokinetic responses. We conclude that the altered wiring of the visual system of white birds has no influence on accessory optic system function. The unwillingness of white birds to respond with optokinetic response in bright daylight may be due to a substantial lack of inhibition within the visual system as demonstrated earlier, which may enhance the sensibility to glare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bischof H-J (1988) The visual field and visually guided behavior in the zebra finch (Taeniopygia guttata). J Comp Physiol A 163:329–337

    Article  Google Scholar 

  • Brauth SE, Karten HJ (1977) Direct accessory optic projections to the vestibulo-cerebellum: a possible channel for oculomotor control systems. Exp Brain Res 28:73–84

    Article  PubMed  CAS  Google Scholar 

  • Brecha N, Karten HJ (1978) Projection of the accessory optic nuclei and vestibular nuclei upon the oculomotor nuclear complex in pigeon. Ann Rec 190:605–606

    Google Scholar 

  • Bredenkötter M, Bischof H-J (1990) Ipsilaterally evoked responses of the zebra finch visual wulst are reproduced during ontogeny. Brain Res 515:343–346

    Article  PubMed  Google Scholar 

  • Bredenkötter M, Engelage J, Bischof H-J (1996) Visual system alterations in white zebra finches. Brain Behav Evol 47:23–32

    Article  PubMed  Google Scholar 

  • Burns S, Wallman J (1981) Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root (accessory optic system) in chickens. Exp Brain Res 42:171–180

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, Winterson BJ, Dubois MF (1978) Optokinetic eye movements in albino rabbits: inversion in anterior visual field. Science 199:1351–1353

    Article  PubMed  CAS  Google Scholar 

  • Davies MN, Green PR (1990) Optic flow-field variables trigger landing in hawk but not in pigeons. Naturwissenschaften 77:142–144

    Article  PubMed  CAS  Google Scholar 

  • Davies MNO, Green PR (1991) The adaptability of visuomotor control in the pigeon during landing flight. Zool Jahrb Physiol 95:331–338

    Google Scholar 

  • Diekamp B, Hellmann B, Troje NF, Wang SR, Güntürkün O (2001) Electrophysiological and anatomical evidence for a direct projection from the nucleus of the basal optic root to the nucleus rotundus in pigeons. Neurosci Lett 305:103–106

    Article  PubMed  CAS  Google Scholar 

  • Engelage J, Bischof H-J (1988) Enucleation enhances ipsilateral flash evoked responses in the ectostriatum of the zebra finch (Taeniopygia guttata castanotis Gould). Exp Brain Res 70:79–89

    PubMed  CAS  Google Scholar 

  • Fite KV, Reiner A, Hunt SP (1979) Optokinetic nystagmus and the accessory optic system of pigeon and turtle. Brain Behav Evol 16:192–202

    Article  PubMed  CAS  Google Scholar 

  • Fite KV, Brecha N, Karten HJ, Hunt SP (1981) Displaced ganglion cells and the accessory optic system of pigeon. J Comp Neurol 195:279–288

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Xiao Q, Gao HF, Wang SR (1998) Stimulus features eliciting visual responses from neurons in the nucleus lentiformis mesencephali in pigeons. Vis Neurosci 15:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Gioanni H (1988) Stabilizing gaze reflexes in the pigeon (Columba livia).1. Horizontal and vertical optokinetic eye (Okn) and head (Ocr) reflexes. Exp Brain Res 69:567–582

    Article  PubMed  CAS  Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Bouyer JJ, Gioanni Y (1981) Optokinetic nystagmus in the pigeon (Columba livia). 1. Study in monocular and binocular vision. Exp Brain Res 44:362–370

    Article  PubMed  CAS  Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983a) Optokinetic nystagmus in the pigeon (Columba livia). 2. Role of the pretectal nucleus of the accessory optic-system (AOS). Exp Brain Res 50:237–247

    PubMed  CAS  Google Scholar 

  • Gioanni H, Villalobos J, Rey J, Dalbera A (1983b) Optokinetic nystagmus in the pigeon (Columba livia). 3. Role of the nucleus ectomamillaris (nEM): interactions in the accessory optic-system (Aos). Exp Brain Res 50:248–258

    PubMed  CAS  Google Scholar 

  • Hoffmann KP, Distler C, Markner C (1996) Optokinetic nystagmus in cats with congenital strabismus. J Neurophysiol 75:1495–1502

    PubMed  CAS  Google Scholar 

  • Hoffmann KP, Garipis N, Distler C (2004) Optokinetic deficits in albino ferrets (Mustela putorius furo): a behavioral and electrophysiological study. J Neurosci 24:4061–4069

    Article  PubMed  CAS  Google Scholar 

  • Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M (2001) Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network 12:351–369

    PubMed  CAS  Google Scholar 

  • Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M (2005) Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biol 3:e171

    Article  PubMed  CAS  Google Scholar 

  • Lappe M (2000) Neuronal processing of optic flow. In: Intern Rev Neurobiol, vol 44. Academic Press, San Diego, CA

  • Lee DN, Davies MNO, Green PR, Vanderweel FRR (1993) Visual control of velocity of approach by pigeons when landing. J Exp Biol 180:85–104

    Google Scholar 

  • Leminski S, Bischof HJ (1996) Morphological alterations of the visual system in white zebra finches. Neuroreport 7:557–561

    Article  PubMed  CAS  Google Scholar 

  • Miceli D, Giovanni H, Reperant J, Peyrichoux J (1979) The avian visual wulst I. An anatomical study of afferent and efferent pathways. II An electrophysiological study of the functional properties of single neurons. In: Granda AM, Maxwell JH (eds) Neural mechanisms of behavior of the pigeon. Plenum Press, New York, pp 223–354

    Google Scholar 

  • Mohn G, Sireteanu R, van Hof-van Duin J (1986) The relation of monocular optokinetic nystagmus to peripheral binocular interactions. Invest Ophtalmol Vis Sci 27:565–573

    CAS  Google Scholar 

  • Rio JP, Villaloboo J, Miceli D, Reperant J (1983) Efferent projections of the visual wulst upon the nucleus of the basal optic root in the pigeon. Brain Res 271:145–151

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Karten HJ (1993) The avian visual system and the evolution of the neocortex. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behavior in birds. MIT Press, Cambridge, pp 103–114

    Google Scholar 

  • Wang YC, Frost BJ (1992) Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356:236–238

    Article  PubMed  CAS  Google Scholar 

  • Winterson BJ, Brauth SE (1985) Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia). Exp Brain Res 60:215–226

    Article  PubMed  CAS  Google Scholar 

  • Wylie DR, Crowder NA (2000) Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons. J Neurophysiol 84:2529–2540

    PubMed  CAS  Google Scholar 

  • Wylie DR, Frost BJ (1999) Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields. J Neurophysiol 81:267–276

    PubMed  CAS  Google Scholar 

  • Wylie DR, Linkenhoker B, Lau KL (1997) Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextran amine. J Comp Neurol 384:517–536

    Article  PubMed  CAS  Google Scholar 

  • Wylie DR, Bischof WF, Frost BJ (1998) Common reference frame for neural coding of translational and rotational optic flow. Nature 392:278–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Bischof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckmeier, D., Bischof, HJ. The optokinetic response in wild type and white zebra finches. J Comp Physiol A 194, 871–878 (2008). https://doi.org/10.1007/s00359-008-0358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0358-7

Keywords

Navigation