Skip to main content
Log in

Polarization vision in crayfish motion detectors

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Motion detector interneurons were examined to determine their responsiveness to the motion of polarized light images (i.e. images segmented by spatial variations in e-vector angle). Computer generated images were displayed as intensity contrasts or polarization contrasts on a modified LCD projection panel. The stimuli included the motion of a single stripe (45°–55°/s) and the global motion of a square wave grating (3.3°/s). Neurons were impaled in the medulla interna. Of the neurons which exhibited a directional response to the motion of intensity contrast stimuli, about 2/3 were also directional in the response to polarized light images. Transient (nondirectional) stimuli included looming and jittery motions. The responses to the transient motions of the polarized light images were roughly comparable to those elicited by intensity contrast. The results imply that behavioral responses to polarized light images (i.e. optokinetic and defense reflexes) may have a basis in the polarization sensitivity and synaptic organization of the medulla interna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DS:

Directionally selective

DSI:

Directional selectivity index

F p, F n :

Firing rates in preferred and null directions, respectively

LCD:

Liquid crystal diode

ME:

Medulla externa

PS:

Polarization sensitivity

PSTH:

Poststimulus time histogram

References

  • Barlow H, Levick WR (1965) The mechanism of directionally selective units in the rabbit’s retina. J Physiol 178:477–504

    PubMed  CAS  Google Scholar 

  • Barnes WJ, Horseman BG, Macauley MWS (2002) The detection and analysis of optic flow by crabs: from eye movements to electrophysiology. In: Wiese K (ed) The Crustacean nervous system. Springer, Berlin, pp 468–485

    Google Scholar 

  • Cronin TW (2006) Invertebrate vision in water. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, New York, pp 211–249

    Google Scholar 

  • Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou T-H (2003) Polarization vision and its role in biological signaling. Integr Comp Biol 43:549–558

    Article  Google Scholar 

  • Egelhaaf M (2006) The neural computation of visual motion information. In: Warrant E, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 399–461

    Google Scholar 

  • Glantz RM (1996a) Polarization sensitivity in crayfish lamina monopolar neurons. J Comp Physiol A 178:413–425

    Article  Google Scholar 

  • Glantz RM (1996b) Polarization sensitivity in the crayfish optic lobe: peripheral contributions to opponency and directionally selective motion detection. J Neurophysiol 76:3404–3414

    PubMed  CAS  Google Scholar 

  • Glantz RM (1974) Defense reflex and motion detector responsiveness to approaching targets: the motion detector trigger to the defense reflex pathway. J Comp Physiol A 95:297–314

    Article  Google Scholar 

  • Glantz RM (1977) Visual input and motor output of command interneurons of the defense reflex pathway in the crayfish. In: Hoyle G (ed) Identified neurons and behavior in arthropods. Plenum, New York, pp 259–274

    Google Scholar 

  • Glantz RM (1998) Directionality and inhibition in crayfish tangential cells. J Neurophysiol 79:1157–1166

    PubMed  CAS  Google Scholar 

  • Glantz RM (2001) Polarization analysis in the crayfish visual system. J Exp Biol 204:2383–2390

    PubMed  CAS  Google Scholar 

  • Glantz RM (2007) The distribution of polarization sensitivity in the crayfish retinula. J Comp Physiol A 193:893–901

    Article  Google Scholar 

  • Glantz RM, McIsaac A (1998) Two-channel polarization analyzer in the sustaining fiber-dimming fiber ensemble of crayfish visual system. J Neurophysiol 80:2571–2583

    PubMed  CAS  Google Scholar 

  • Glantz RM, Schroeter JP (2006) Polarization contrast and motion detection. J Comp Physiol A 192:905–914

    Article  Google Scholar 

  • Glantz RM, Schroeter JP (2007) Orientation by polarized light in the crayfish dorsal light reflex: behavioral and neurophysiological studies. J Comp Physiol A 193:371–384

    Article  Google Scholar 

  • Goddard SM, Forward RB (1991) The role of the underwater polarized light pattern, in the sun compass navigation of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491

    Article  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial e-vector orientations in the brain of an insect. Science 315:995–997

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita M, Pfeiffer K, Homberg U (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J Exp Biol 210:1350–1361

    Article  PubMed  Google Scholar 

  • Kirk, MD (1982) The crayfish visual system: intracellular studies and morphologies of identified interneurons. PhD Thesis, Rice University

  • Kleinlogel S, Marshall NJ (2006) Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol 209:4262–4272

    Article  PubMed  Google Scholar 

  • Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430

    PubMed  CAS  Google Scholar 

  • Leggett LMW (1976) Polarised light-sensitive interneurons in a swimming crab. Nature 262:709–711

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe JN, Hemmings CC (1967) Polarized light and underwater vision. Nature 213:893–894

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Cronin TW, Shashar N, Land M (1999) Behavioral evidence for polarization vision in stomatopods reveals a potential channel for communication. Curr Biol 9:755–758

    Article  PubMed  CAS  Google Scholar 

  • Medan V, Oliva D, Tomsic D (2007) Characteristics of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J Neurophysiol 98:2414–2428

    Article  PubMed  Google Scholar 

  • Miller CS, Johnson DH, Schroeter JP, Myint LL, Glantz RM (2002) Visual signals in an optomotor reflex: Systems and information theoretic analysis. J Comput Neurosci 13:5–21

    Article  PubMed  Google Scholar 

  • Miller CS, Johnson DH, Schroeter JP, Myint LL, Glantz RM (2003) Visual responses of crayfish ocular motoneurons: an information theoretical analysis. J Comput Neurosci 15:247–269

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR, Waterman TH (1977) Golgi EM evidence for visual information channelling in the crayfish lamina ganglionaris. Brain Res 130:556–563

    Article  Google Scholar 

  • Oliva D, Medan V, Tomsic D (2007) Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J Exp Biol 210:865–880

    Article  PubMed  Google Scholar 

  • Sabra R, Glantz RM (1985) Polarization sensitivity of crayfish photoreceptors is correlated with their termination sites in the lamina ganglionaris. J Comp Physiol A 156:315–318

    Article  Google Scholar 

  • Shaw S (1966) Polarized light responses from crab retinula cells. Nature 211:92–93

    Article  PubMed  CAS  Google Scholar 

  • Tuthill JC, Johnsen S (2006) Polarization sensitivity in the red swamp crayfish Procambarus clarkii enhances the detection of moving transparent objects. J Exp Biol 209:1612–1616

    Article  PubMed  Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol. VII/6, Springer, Berlin, pp 281–469

    Google Scholar 

  • Waterman TH (1984) Natural polarized light and vision. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 63–114

    Google Scholar 

  • Waterman TH, Fernandez HR (1970) E-vector and wavelength discrimination by retinular cells of the crayfish, Procambarus. Z. Vgl Physiol 68:154–174

    Article  Google Scholar 

  • Wehner R (2001) Polarization vision: a uniform capacity? J Exp Biol 204:2589–2596

    PubMed  CAS  Google Scholar 

  • Wiersma CAG, Oberjat T (1968) The selective responsiveness of various crayfish oculomotor fibers to sensory stimuli. Comp Biochem and Physiol 26:1-16

    Article  CAS  Google Scholar 

  • Wiersma CAG, Yamaguchi T (1966) The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J Comp Neurol 128:333–358

    Article  PubMed  CAS  Google Scholar 

  • Wiersma CAG, Yamaguchi T (1967) Integration of visual stimuli by the crayfish central nervous system. J Exp Biol 47:409–431

    PubMed  CAS  Google Scholar 

  • Wiersma CAG, Roach J, Glantz RM (1982) Neural integration in the optic system. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea, vol. 4, Academic Press, New York, pp 1–31

    Google Scholar 

Download references

Acknowledgment

This research was supported by NSF Grant No. IOB–0613285. I thank the staff at Friday Harbor Labs for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymon M. Glantz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glantz, R.M. Polarization vision in crayfish motion detectors. J Comp Physiol A 194, 565–575 (2008). https://doi.org/10.1007/s00359-008-0331-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0331-5

Keywords

Navigation