Skip to main content
Log in

E-Vector and wavelength discrimination by retinular cells of the crayfish Procambarus

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Receptor potentials have been recorded intracellularly from single retinular cells in the anterior and dorsal quadrants of the compound eye of the crayfish Procambarus (Fig. 1) stimulated with equal quantum flashes of linearly polarized monochromatic light. Comparisons between two orthogonal stimulus e-vectors respectively parallel and perpendicular to the microvilli of each receptor cell's rhabdomere were made sequentially in about one minute's running time at 20 nm intervals between 400 and 740 nm (Fig. 2).

  2. 2.

    Of the 91 cells studied 17 responded maximally in the violet (av. λ max= 440 nm) whereas the other 74 cells were most responsive in the yellow-orange (av.λ max=594 nm) (Table 1). For the latter group the λ max of individual cells ranged widely from 538 to 634 nm (Fig. 4). Violet sensitive cells were found only in the anterior quadrant of the eye.

  3. 3.

    For 29 cells spectral sensitivity curves were plotted from the spectral efficiency curves using response-energy functions determined at λ max or spectral efficiency curves taken at two or more stimulus energy levels (Figs. 5B, 6B, 7). When the sensitivity curves are normalized the vertical and horizontal e-vector responses are closely similar indicating that dichroism of the visual pigment is undoubtedly responsible for the observed differential sensitivity (Figs. 5C, 6C).

  4. 4.

    For 51 yellow-orange cells where e-vector comparisons can be made more than half (57%) were more responsive to vertical e-vector (Table 2) corresponding very closely with the estimated percentage of retinular cells with microvilli parallel to the body's dorso-ventral axis (57.2%). In contrast five of the seven violet cells available for this comparison gave stronger responses to horizontal e-vector suggesting they may predominantly be the one asymmetrical cell in each ommatidium. Nevertheless both color discriminating types were found to be present in both e-vector channels.

  5. 5.

    For the 29 cells for which spectral sensitivity curves can be plotted the average sensitivity ratio for the two polarization planes is 3.1 with a range from 1.2 to 11.9 at λ max. Since dichroic absorption ratios directly measured in crayfish have previously been shown to be about 2, the origin of greater spectral sensitivity ratios in individual retinular cells most likely must depend on other functions than photon absorption by a single rhabdomere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol. 60, 450–477 (1968).

    Google Scholar 

  • —, Zwehl, V. von: Die Sehzellen der Insekten als Analysatoren für polarisiertes Licht. Z. vergl. Physiol. 46, 1–7 (1962).

    Google Scholar 

  • —: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).

    Google Scholar 

  • Bäuerlein, R.: Morphophysiologische Untersuchungen zum Sehvermögen von Potamon potamios rhodium Parisi (Decapoda, Potamonidae). Forma et Functio 1, 285–331 (1969).

    Google Scholar 

  • Bennett, R.: Spectral sensitivity studies on the whirligig beetle, Dineutes ciliatus. J. Insect Physiol. 13, 621–633 (1967).

    Google Scholar 

  • Bennett, R. R., Tunstall, J., Horridge, G. A.: Spectral sensitivity of single retinular cells of the locust. Z. vergl. Physiol. 55, 195–206 (1967).

    Google Scholar 

  • Bernhard, C. G. (ed.): The functional organization of the compound eye. pp. 591. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Bernhards, H.: Der Bau des Komplexauges von Astacus fluviatilis (Potamobius astacns L.). Z. wiss Zool. 116, 649–707 (1916).

    Google Scholar 

  • Bruckmoser, P.: Die spektrale Empfindlichkeit einzelner Sehzellen des Rückenschwimmers Notonecta glauca L. (Heteroptera). Z. vergl. Physiol. 59, 187–204 (1968).

    Google Scholar 

  • Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16, 86–109 (1962).

    Google Scholar 

  • —, Wendler, L.: Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z. vergl. Physiol. 43, 687–692 (1960).

    Google Scholar 

  • Dartnall, H. J. A.: The interpretation of spectral sensitivity curves. Brit. med. Bull. 9, 24–30 (1953).

    Google Scholar 

  • Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. cell. comp. Physiol. 66, 411–429 (1965).

    Google Scholar 

  • —, Waterman, T. H.: Cellular basis for polarized light perception in the spider crab, Libinia. Z. Zellforsch. 84, 87–101 (1968).

    Google Scholar 

  • Fernández, H. R.: A survey of the visual pigments of decapod Crustacea of South Florida, 133 pp. Thesis, University of Miami, Coral Gables, Florida 1965.

    Google Scholar 

  • Genest, A.: An analysis of dark adaptation in two crustacean forms, Callinectes sapidus and Procambarus sp., 64 pp. Thesis, Yale University, New Haven, Connecticut 1961.

    Google Scholar 

  • Giulio, L.: Elektroretinographische Beweisführung dichroitischer Eigenschaften des Komplexauges bei Zweiflüglern. Z. vergl. Physiol. 46, 491–495 (1963).

    Google Scholar 

  • Glantz, R. M.: Light adaptation in the photoreceptor of the crayfish, Procambarus clarkii. Vision Res. 8, 1407–1421 (1968).

    Google Scholar 

  • Goldsmith, T. H.: The visual system of insects. In: The physiology of insecta, vol. I, (M. Rockstein, ed.), p. 397–462. New York: Academic Press 1964.

    Google Scholar 

  • —: Do flies have a red receptor? J. gen. Physiol. 49, 265–287 (1965).

    Google Scholar 

  • —: The natural history of invertebrate visual pigments. In: Handbook of sensory physiology, vol. VII. The photochemistry of vision (H. J. A. Dartnall, ed.). Berlin-Heidelberg-NewYork: Springer 1970 (in press).

    Google Scholar 

  • —, Fernández, H. R.: Comparative studies of crustacean spectral sensitivity. Z. vergl. Physiol. 60, 156–175 (1968).

    Google Scholar 

  • Hagins, W. A., Liebman, P. A.: The relationship between photochemical and electrical processes in living squid photoreceptors. Abstracts of Biophysical Society 7th Annual Meeting, New York, N.Y. ME 6. 1963.

  • Harreveld, A. D. van: A physiological solution for freshwater crustaceans. Proc. Soc. exp. Biol. Med. (N.Y.) 34, 428–432 (1936).

    Google Scholar 

  • Hays, D., Goldsmith, T. H.: Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. vergl. Physiol. 65, 218–232 (1969).

    Google Scholar 

  • Horridge, G. A.: Perception of polarization plane, colour and movement in two dimensions by the crab, Carcinus. Z. vergl. Physiol. 55, 207–224 (1967).

    Google Scholar 

  • —: Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62, 1–37 (1969).

    Google Scholar 

  • Kaneko, A., Hashimoto, H.: Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).

    Google Scholar 

  • Kennedy, D., Bruno, M. S.: The spectral sensitivity of crayfish and lobster vision. J. gen. Physiol. 44, 1089–1102 (1961).

    Google Scholar 

  • —, Selverston, A. I., Remler, M. P.: Analysis of restricted neural networks. Science 164, 1488–1496 (1969).

    Google Scholar 

  • Kuwabara, M., Naka, K.: Response of a single retinula cell to polarized light. Nature (Lond.) 184, 455–456 (1959).

    Google Scholar 

  • Langer, H.: Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z. vergl. Physiol. 51, 258–263 (1965).

    Google Scholar 

  • —: Grundlagen der Wahrnehmung von Wellenlänge und Schwingungsebene des Lichtes. Verh. dtsch. zool. Ges. Göttingen 30, 195–233 (1966).

    Google Scholar 

  • Langer, H., Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye Exp. Cell Res. 41, 673–677 (1966a).

    Google Scholar 

  • —: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: The functional organization of the compound eye (C. G. Bernhard, ed.), p. 145–150. Oxford: Pergamon Press 1966b.

    Google Scholar 

  • Liebmann, P. A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).

    Google Scholar 

  • Lüdtke, H.: Dunkeladaptation und Verschiebung der Helligkeitswerte im Auge von Notonecta glauca L. Z. Naturforsch. 9, 159–163 (1954).

    Google Scholar 

  • Mazokhin-Porshniakov, G. A.: Colorimetric study of color vision in the dragonfly. Biofizika 4, 427–436 [in Russian]. Biophysics 4, 46–57 (English translation) (1959).

    Google Scholar 

  • Moody, M. F.: Photoreceptor organelles in animals. Biol. Rev. 39, 43–86 (1964).

    Google Scholar 

  • Nosaki, H.: Electrophysiological study of color encoding in the compound eye of crayfish, Procambarus clarkii. Z. vergl. Physiol. 64, 318–323 (1969).

    Google Scholar 

  • Parker, G. H.: The retina and optic ganglia in decapods, especially Astacus. Mitteil. Zool. Station Neapel 12, 1–73 (1895).

    Google Scholar 

  • Ruck, P.: The components of the visual system of a dragonfly. J. gen. Physiol. 49, 289–307 (1965).

    Google Scholar 

  • Rutherford, D. J., Horridge, G. A.: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119–130 (1965).

    Google Scholar 

  • Schneider, L., Langer, H.: Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris. Z. Zellforsch. 99, 538–559 (1969).

    Google Scholar 

  • Shaw, S. R.: Polarized light responses from crab retinula cells. Nature (Lond.) 211, 92–93 (1966).

    Google Scholar 

  • —: Simultaneous recordings from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967).

    Google Scholar 

  • —: Organization of the locust retina. Symp. Zool. Soc. (Lond.) 23, 135–163 (1968).

    Google Scholar 

  • —: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9 (9), 999–1029 (1969a).

    Google Scholar 

  • —: Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9 (9), 1031–1040 (1969b).

    Google Scholar 

  • Stieve, H.: Die spektrale Empfindlichkeitskurve des Auges von Eupagurus bernhardus L. Z. vergl. Physiol. 43, 518–525 (1960).

    Google Scholar 

  • Tomita, T., Kaneko, A., Murakami, M., Pautler, E. L.: Spectral response curves of single cones in the carp. Vision Res. 7, 519–531 (1967).

    Google Scholar 

  • Wald, G.: Single and multiple visual systems in arthropods. J. gen. Physiol. 51, 125–156 (1968).

    Google Scholar 

  • —, Brown, P. K., Gibbons, I. R.: Visual excitation: a chemoanatomical study. Symp. Soc. exp. Biol. 16, 32–57 (1962).

    Google Scholar 

  • —, Seldin, E. B.: Spectral sensitivity of the common prawn Palaemonetes vulgaris. J. gen. Physiol. 51, 694–700 (1968).

    Google Scholar 

  • Waterman, T. H.: Light sensitivity and vision. In: The physiology of Crustacea, vol. II (T. H. Waterman, ed.), p. 1–64. New York: Academic Press 1961.

    Google Scholar 

  • —: Information channeling in the crustacean retina. In: Proc. of the Symp. on Information Processing in Sight Sensory Systems, (P. W. Nye, ed.), p. 48–56. Pasadena: National Institutes of Health and the California Institute of Technology 1966.

    Google Scholar 

  • Waterman, T. H.: Systems theory and biology — view of a biologist. In: Systems theory and biology (M. D. Mesarović, ed.), p. 1–37. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • —, Fernández, H. R., Goldsmith, T. H.: Dichroism of photosensitive pigments in rhabdoms of the crayfish Orconectes. J. gen. Physiol. 54, 415–432 (1969).

    Google Scholar 

  • —, Horch, K. W.: Mechanism of polarized light perception. Science 154, 467–475 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These experiments were carried out in the Laboratory of Professor Tsuneo Tomita, Department of Physiology, Keio University School of Medicine. A preliminary report on this work was made at the December, 1969 meeting of the American Society of Zoologists.

We are grateful to Professor Tsuneo Tomita and his associates in the Department of Physiology, School of Medicine, Keio University, Tokyo for their hospitality, unfailing help and advice in carrying out these experiments. Dr. Hiroshi Nosaki generously made available to us his earlier experience with this preparation. Thanks are also due Mrs. Mabelita Campbell for her helpful assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waterman, T.H., Fernández, H.R. E-Vector and wavelength discrimination by retinular cells of the crayfish Procambarus . Z. Vergl. Physiol. 68, 154–174 (1970). https://doi.org/10.1007/BF00297692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297692

Keywords

Navigation