Skip to main content
Log in

Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus)

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The concave-eared torrent frogs (Amolops tormotus) have highly unusual ear morphology—in males the eardrums are embedded deep inside ear cavities. In collaboration with our colleagues we investigated the functional significance of this morphological feature in hearing. Sound recordings in the field showed that males of A. tormotus produce diverse bird-like melodic calls with pronounced frequency modulations and non-linear phenomena (e.g., frequency jumps, different orders of subharmonics, and chaos) that often contain spectral energy in the ultrasonic range. The audible as well as the ultrasonic components of the species call could effectively evoke males’ vocal responses, demonstrating that they can hear and respond to ultrasound. Electrophysiological recordings from the auditory midbrain confirmed the ultrasonic hearing capacity of these frogs. The recessed tympana and extremely thin tympanic membranes are adaptations for hearing ultrasound—this sensitivity may have evolved in response to the intense, predominately low-frequency ambient noise from local streams. Finally, results from the isolated laryngeal preparation in euthanized frogs revealed that the origin of call complexity and diversity lies with having a vocal system with nonlinear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AEP:

Average evoked potential

AUD:

Audible components

CF:

Constant-frequency

FM:

Frequency-modulated

SPL:

Sound pressure level

US:

Ultrasonic components

References

  • Anson M, Pinder AC, Keating MJ, Chung SH (1985) Acoustic vibration of the amphibian eardrum studied by white noise analysis and holographic interferometry. J Acoust Soc Am 78:916–923

    Article  PubMed  CAS  Google Scholar 

  • Bogert CM (1960) The influence of sound on the behavior of amphibians and reptiles. In: Lanyon WE, Tavolga WN (eds) Animal sounds and communication. AIBS, Washington DC, pp 137–320

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Chen BH (1991) The amphibian and reptilian fauna of Anhui. Anhui Publishing House of Science and Technology, Hefei

    Google Scholar 

  • Christensen-Dalsgaard J, Ludwig TA, Narins PM (2002) Call diversity in an old world treefrog: level dependence and latency of acoustic responses. Bioacoustics 13:21–35

    Google Scholar 

  • Corso JF (1963) Bone-conduction thresholds for sonic and ultrasonic frequencies. J Acoust Soc Am 35:1738–1743

    Article  Google Scholar 

  • Dieroof HG, Ertel H (1975) Some thoughts on the perception of ultrasonics by man. Arch Otorhinolaryngol 209:277–290

    Article  Google Scholar 

  • Dubois A (1992) Notes sur la classification des Ranidae (Amphibiens Anoures). Bull Mens Soc Linn Lyon 61:305–352

    Google Scholar 

  • Fee MS (2002) Measurement of the linear and nonlinear mechanical properties of the oscine syrinx. J Comp Physiol A188:829–839

    Article  Google Scholar 

  • Fee MS, Shraiman B, Pesaran B, Mitra PP (1998) The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature 395:67–71

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Narins PM, Xu CH (2002) Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften 89:352–356

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX (2006) Ultrasonic communication in frogs. Nature 440:333–336

    Article  PubMed  CAS  Google Scholar 

  • Fitch WT, Neubauer J, Herzel H (2002) Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim Behav 63:407–418

    Article  Google Scholar 

  • Gridi-Papp M, Rand AS, Ryan MJ (2006) Animal communication: complex call production in the tungara frog. Nature 441:38

    Article  PubMed  CAS  Google Scholar 

  • Hauser MD (1996) The evolution of communication. MIT, Cambridge

    Google Scholar 

  • Herzel H, Berry D, Titze I, Steinecke I (1995) Nonlinear dynamics of the voice: signal analysis and biomechanical modeling. Chaos 5:30–34

    Article  PubMed  Google Scholar 

  • Hosoi H, Imaizumi S, Sakaguchi T, Tonoike M, Murata K (1998) Activation of the auditory cortex by ultrasound. Lancet 351:496–497

    Article  PubMed  CAS  Google Scholar 

  • Huang MH (1991) Fauna of Zhejiang: Amphibia, reptilia. Zhejiang Science and Technology Publishing House, Hangzhou

    Google Scholar 

  • Imaizumi S, Hosoi H, Sakaguchi T, Watanabe Y, Sadato N, Nakamura S, Waki A, Yonekura Y (2001) Ultrasound activates the auditory cortex of profoundly deaf subjects. Neuroreport 12:583–586

    Article  PubMed  CAS  Google Scholar 

  • Inger RF (1966) The systematics and zoogeography of the amphibian of Borneo. Fieldiana: Zool 52:1–402

    Google Scholar 

  • Jørgensen MB, Kanneworff M (1998) Middle ear transmission in the grass frog, Rana temporaria. J Comp Physiol 182:59–64

    Article  Google Scholar 

  • Liu WZ, Yang DT, Ferraris C, Matsui M (2000) Amolops bellulus: a new species of stream-breeding frog from western Yunnan, China (Anura: Ranidae). Copeia 2000(2):536–541

    Article  Google Scholar 

  • Manley GA (1972) The middle ear of the Tokay gecko. J Comp Physiol 81:239–250

    Article  Google Scholar 

  • Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Springer, New York

    Google Scholar 

  • Mason MJ, Narins PM (2002a) Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. J Exp Biol 205:3153–3165

    PubMed  Google Scholar 

  • Mason MJ, Narins PM (2002b) Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum. J Exp Biol 205:3167–3176

    PubMed  Google Scholar 

  • Matsui M (1986) Three new species of Amolops from Borneo. Copeia 1986:623–630

    Article  Google Scholar 

  • Matsui M, Nabhitabhata J (2006) A new species of Amolops from Thailand (Amphibia, Anura, Ranidae). Zool Sci 23:727–732

    Article  PubMed  Google Scholar 

  • Matsui M, Wu GF, Yong HS (1993) Acoustic characteristics of three species of the genus Amolops (Amphibia, Anura, Ranidae). Zool Sci 10:691–695

    Google Scholar 

  • Matsui M, Shimada T, Liu WZ, Maryati M, Khonsue W, Orlov N (2006) Phylogenetic relationships of oriental torrent frogs in the genus Amolops and its allies (Amphibia, Anura, Ranidae). Molec Phylogenet Evol 38:659–666

    Article  PubMed  CAS  Google Scholar 

  • Narins PM, Feng AS, Yong HS, Christensen-Dalsgaard J (1998) Morphological, behavioral and genetic divergence of sympatric morphotypes of the treefrog Polypedetes leucomystax in peninsular Malaysia. Herpetol 54:129–142

    Google Scholar 

  • Narins PM, Lewis ER, McClelland BE (2000) Hyperextended call note repertoire of the endemic Madasgascar treefrog Boophis madagascariensis (Rhacophoridae). J Zool (Lond) 250:283–298

    Article  Google Scholar 

  • Narins PM, Feng AS, Lin WY, Schnitzler HU, Denzinger A, Suthers RA, Xu CH (2004) Old world frog and bird vocalizations contain prominent ultrasonic harmonics. J Acoust Soc Am 115:910–913

    Article  PubMed  Google Scholar 

  • Penna M, Veloso A (1990) Vocal diversity in frogs of the South American temperate forest. J Herpetol 24:23–33

    Article  Google Scholar 

  • Pumphrey RJ 1950) Upper limit of frequency for human hearing. Nature 166:571

    Article  PubMed  CAS  Google Scholar 

  • Purgue AP (1997) Tympanic sound radiation in the bullfrog Rana catesbeiana. J Comp Physiol A181:438–445

    Article  Google Scholar 

  • Rand AS (1988) An overview of anuran acoustic communication. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 415–431

    Google Scholar 

  • Sales G, Pye D (1974) Ultrasonic communication by animals. Chapman and Hall, London

    Google Scholar 

  • Schmid E (1978) Contribution to the morphology and histology of the vocal cords of Central European anurans (Amphibia). Zool Jahrb Abt Anat Ontogenie Tiere 99:133–150

    Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267

    Article  PubMed  CAS  Google Scholar 

  • Sundberg J (1987) The science of the singing voice. Northern Illinois University Press, Dekalb

    Google Scholar 

  • Suthers RA, Narins PM, Lin WY, Schnitzler HU, Denzinger A, Xu CH, Feng AS (2006) Voices of the dead: complex nonlinear vocal signals from the larynx of an ultrasonic frog. J Exp Biol 209:4984–4993

    Article  PubMed  Google Scholar 

  • Wilden I, Herzel H, Peters G, Tembrock G (1998) Subharmonics, biphonation, and deterministic chaos in mammal vocalizations. Bioacoustics 9:171–196

    Google Scholar 

  • Wu GF (1977) A new species of frog from Huang-Shan, Anhui, Rana tormotus Wu. Acta Zool Sinica, Beijing 23:113–115

    Google Scholar 

  • Yang DT (1991) Phylogenetic systematics of the Amolops group of ranid frogs of Southeastern Asia and the greater Sunda Islands. Fieldiana: Zool 63:1–42

    Google Scholar 

  • Zhao EM, Adler K (1993) Herpetology of China. Society for the Study of Amphibians and Reptiles, Oxford

    Google Scholar 

Download references

Acknowledgments

The Chinese Academy of Science sponsored the fieldwork. This research involved extensive collaborations with Annette Denzinger, Wenyu Lin, Qiang Qiu, Hans-Ulrich Schnitzler, Roderick Suthers, Zhimin Xu, Zulin Yu, and foremost Chun-He Xu and Jun-Xian Shen. Kraig Adler informed us of the unusual auditory apparatus of this species. Professor Chen-Me Tsai, Qilin Chen, Weng Jun, Yong Yu, Xinjian Yu, and Yunglung Zhou provided invaluable assistance with the fieldwork. The research is supported by grants from the National Institute for Deafness and Other Communication Disorders of the NIH (R01DC04998 to ASF and R01DC00222 to PMN) and a grant of the National Science Foundation (CNCRS-0422073) to ASF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert S. Feng.

Additional information

A manuscript for a special issue of JCP-A, Comparative Neurobiology: Papers in memory of Theodore H. Bullock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, A.S., Narins, P.M. Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus). J Comp Physiol A 194, 159–167 (2008). https://doi.org/10.1007/s00359-007-0267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0267-1

Keywords

Navigation