Skip to main content

Vocal Sound Production and Acoustic Communication in Amphibians and Reptiles

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 53))

Abstract

Most amphibians and reptiles produce sounds with a larynx containing a pair of vocal cords. Clicking and hissing are common in both groups whereas tonal sounds are found most frequently in anurans and geckos. Calls can exceed 90 dB SPL at a distance of 1 m and they can have fundamental frequencies above 20 kHz. Calling is used mostly by males for courtship and territorial displays. Offspring and females call to synchronize hatching and to mediate maternal care. Adults and juveniles in many groups produce hissing when threatened. Amphibians and reptiles include more than 17,000 species. As a result of this diversity, major advances in the field of vocalization are made through exploratory research but also through careful experimentation and the use of novel technologies. Combining the study of vocal and auditory systems is important to explain issues such as the diversity of frequency tuning in the group. Many questions can also be answered through comparative studies in amphibians and reptiles because these groups have evolved independent solutions to common communication problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arch, V. S., Grafe, T. U., Gridi-Papp, M., & Narins, P. M. (2009). Pure ultrasonic communication in an endemic Bornean frog. PLoS One, 4(4), e5413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arch, V. S., Grafe, T. U., & Narins, P. M. (2008). Ultrasonic signaling by a Bornean frog. Biology Letters, 4(1), 19–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey, W. J., & Roberts, J. D. (1981). The bioacoustics of the burrowing frog Heleioporus (Leptodactylidae). Journal of Natural History, 15(4), 693–702.

    Article  Google Scholar 

  • Bernal, X. E., Page, R. A., Rand, A. S., & Ryan, M. J. (2007). Cues for eavesdroppers: Do frog calls indicate prey density and quality? The American Naturalist, 169(3), 409–415.

    Article  PubMed  Google Scholar 

  • Bernal, X. E., Rand, A. S., & Ryan, M. J. (2006). Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to túngara frog calls. Behavioral Ecology, 17(5), 709–715.

    Article  Google Scholar 

  • Bernal, X. E., Rand, A. S., & Ryan, M. J. (2009). Task differences confound sex differences in receiver permissiveness in túngara frogs. Proceedings of the Royal Society B: Biological Sciences, 276(1660), 1323–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair, W. F. (1974). Character displacement in frogs. American Zoologist, 14(4), 1119–1125.

    Article  Google Scholar 

  • Bogert, C. M. (1953). Body temperatures of the tuatara under natural conditions. Zoologica, 38(4), 63–64.

    Google Scholar 

  • Boonman, A., & Kurniati, H. (2011). Evolution of high-frequency communication in frogs. Evolutionary Ecology Research, 13(2), 197–207.

    Google Scholar 

  • Britton, A. R. C. (2001). Review and classification of call types of juvenile crocodilians and factors affecting distress calls. In G. C. Grigg, F. Seebacher, & C. E. Franklin (Eds.), Crocodilian biology and evolution (pp. 364–377). Chipping Norton, England: Surrey Beatty & Sons.

    Google Scholar 

  • Brodie, E. D. (1978). Biting and vocalization as antipredator mechanisms in terrestrial salamanders. Copeia, 1978(1), 127–129.

    Article  Google Scholar 

  • Bucher, T. L., Ryan, M. J., & Bartholomew, G. A. (1982). Oxygen consumption during resting, calling, and nest building in the frog Physalaemus pustulosus. Physiological Zoology, 55(1), 10–22.

    Article  Google Scholar 

  • Cai, H.-X., Che, J., Pang, J.-F., Zhao, E.-M., & Zhang, Y.-P. (2007). Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus. Zootaxa, 1531, 49–55.

    Google Scholar 

  • Campbell, H. W., & Evans, W. E. (1972). Observations on the vocal behavior of chelonians. Herpetologica, 28, 277–280.

    Google Scholar 

  • Capranica, R. R., & Moffat, A. J. M. (1983). Neurobehavioral correlates of sound communication in anurans. In J.-P. Ewert, R. R. Capranica, & D. J. Ingle (Eds.), Advances in vertebrate neuroethology (pp. 710–730). New York: Plenum Press.

    Google Scholar 

  • Castellano, S., & Giacoma, C. (1998). Stabilizing and directional female choice for male calls in the European green toad. Animal Behaviour, 56(2), 275–287.

    Article  PubMed  Google Scholar 

  • Chung, S. H., Pettigrew, A., & Anson, M. (1978). Dynamics of the amphibian middle ear. Nature, 272(5649), 142–147.

    Article  CAS  PubMed  Google Scholar 

  • Cree, A. (1994). Low annual reproductive output in female reptiles from New Zealand. New Zealand Journal of Zoology, 21(4), 351–372.

    Article  Google Scholar 

  • Dawson, B., & Ryan, M. J. (2009). Early experience leads to changes in the advertisement calls of male Physalaemus pustulosus. Copeia, 2009(2), 221–226.

    Article  Google Scholar 

  • Dawson, B., & Ryan, M. J. (2012). Female preferences are not altered by early acoustic experience in the neotropical frog Physalaemus pustulosus. Journal of Herpetology, 46(4), 535–538.

    Article  Google Scholar 

  • De Jongh, H. J., & Gans, C. (1969). On the mechanism of respiration in the bullfrog, Rana catesbeiana: A reassessment. Journal of Morphology, 127(3), 259–289.

    Article  Google Scholar 

  • Drewry, G. E., Heyer, W. R., & Rand, A. S. (1982). A functional analysis of the complex call of the frog Physalaemus pustulosus. Copeia, 1982(3), 636–645.

    Article  Google Scholar 

  • Dudley, R., & Rand, A. S. (1991). Sound production and vocal sac inflation in the túngara frog, Physalaemus pustulosus (Leptodactylidae). Copeia, 1991(2), 460–470.

    Article  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Eichelberg, H., & Obert, H.-J. (1976). Fat and glycogen utilization in the larynx muscles of fire-bellied toads (Bombina bombina L.) during calling activity. Cell and Tissue Research, 167(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Emerson, S. B., Greig, A., Carroll, L., & Prins, G. S. (1999). Androgen receptors in two androgen-mediated, sexually dimorphic characters of frogs. General and Comparative Endocrinology, 114(2), 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Feder, M. E., & Burggren, W. W. (1992). Environmental physiology of the amphibians. Chicago: University of Chicago Press.

    Google Scholar 

  • Fee, M. S., Shraiman, B., Pesaran, B., & Mitra, P. P. (1998). The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395(6697), 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Feng, A., & Narins, P. (2008). Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 194(2), 159–167.

    Article  PubMed  Google Scholar 

  • Feng, A., Narins, P., & Xu, C.-H. (2002). Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften, 89(8), 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., et al. (2006). Ultrasonic communication in frogs. Nature, 440(7082), 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Feng, A. S., Riede, T., Arch, V. S., Yu, Z., Xu, Z.-M., Yu, X.-J., et al. (2009). Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): Evidence for individual signatures. Ethology, 115(11), 1015–1028.

    Article  Google Scholar 

  • Ferrara, C. R., Vogt, R. C., Giles, J. C., & Kuchling, G. (2014a). Chelonian vocal communication. In G. Witzany (Ed.), Biocommunication of animals (pp. 261–274). New York: Springer.

    Chapter  Google Scholar 

  • Ferrara, C. R., Vogt, R. C., & Sousa-Lima, R. S. (2013). Turtle vocalizations as the first evidence of posthatching parental care in chelonians. Journal of Comparative Psychology, 127(1), 24.

    Article  PubMed  Google Scholar 

  • Ferrara, C. R., Vogt, R. C., Sousa-Lima, R. S., Tardio, B. M., & Bernardes, V. C. D. (2014b). Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica, 70(2), 149–156.

    Article  Google Scholar 

  • Fischer, L. M., & Kelley, D. B. (1991). Androgen receptor expression and sexual differentiation of effectors for courtship song in Xenopus laevis. Seminars in Neuroscience, 3(6), 469–480.

    Article  Google Scholar 

  • Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63(3), 407–418.

    Article  Google Scholar 

  • Frankenberg, E. (1982). Vocal behavior of the Mediterranean house gecko, Hemidactylus turcicus. Copeia, 1982, 770–775.

    Article  Google Scholar 

  • Frost, D. R. (2014). Amphibian species of the world: An online reference. New York: American Museum of Natural History. Retrieved May 8, 2015, from http://research.amnh.org/herpetology/amphibia/index.html.

  • Galeotti, P., Sacchi, R., Fasola, M., & Ballasina, D. (2005). Do mounting vocalizations in tortoises have a communication function? A comparative analysis. Herpetological Journal, 15(2), 61–71.

    Google Scholar 

  • Gans, C., Gillingham, J. C., & Clark, D. L. (1984). Courtship, mating and male combat in tuatara, Sphenodon punctatus. Journal of Herpetology, 18(2), 194–197.

    Article  Google Scholar 

  • Gans, C., & Maderson, P. F. A. (1973). Sound producing mechanisms in recent reptiles: Review and comment. American Zoologist, 13(4), 1195–1203.

    Article  Google Scholar 

  • Garrick, L. D., Lang, J. W., & Herzog, H. A. (1978). Social signals of adult American alligators. Bulletin of the AMNH, 160, 155–192.

    Google Scholar 

  • Gaupp, E., & Ecker, A. (1904). A. Ecker’s und R. Wiedersheim’s anatomie des frosches. Braunschweig, Germany: Vieweg.

    Google Scholar 

  • Gerhardt, H. C. (1975). Sound pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 102(1), 1–12.

    Article  Google Scholar 

  • Gerhardt, H. C. (1988). Acoustic properties used in call recognition by frogs and toads. In B. Fritzsch, M. J. Ryan, W. Wilczynski, T. E. Hetherington, & W. Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 455–483). New York: Wiley.

    Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans. Chicago: University of Chicago Press.

    Google Scholar 

  • Giaretta, A. A., Vo, P., Herche, J., Tang, J., & Gridi-Papp, M. (2015). Reinterpreting features of the advertisement call of Dermatonotus muelleri (Boettger, 1885; Anura, Microhylidae). Zootaxa, 3972(4), 595–598.

    Article  PubMed  Google Scholar 

  • Giles, J. C., Davis, J. A., McCauley, R. D., & Kuchling, G. (2009). Voice of the turtle: The underwater acoustic repertoire of the long-necked freshwater turtle, Chelodina oblonga. Journal of the Acoustical Society of America, 126(1), 434–443.

    Article  PubMed  Google Scholar 

  • Girgenrath, M., & Marsh, R. L. (1997). In vivo performance of trunk muscles in tree frogs during calling. Journal of Experimental Biology, 200(24), 3101–3108.

    CAS  PubMed  Google Scholar 

  • Girgenrath, M., & Marsh, R. L. (1999). Power output of sound-producing muscles in the tree frogs Hyla versicolor and Hyla chrysoscelis. Journal of Experimental Biology, 202(22), 3225–3237.

    CAS  PubMed  Google Scholar 

  • Girgenrath, M., & Marsh, R. L. (2003). Season and testosterone affect contractile properties of fast calling muscles in the gray tree frog Hyla chrysoscelis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284(6), 1513–1520.

    Article  Google Scholar 

  • Goller, F., & Daley, M. A. (2001). Novel motor gestures for phonation during inspiration enhance the acoustic complexity of birdsong. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268(1483), 2301–2305.

    Article  CAS  Google Scholar 

  • Grafe, T. U., & Thein, J. (2001). Energetics of calling and metabolic substrate use during prolonged exercise in the European treefrog Hyla arborea. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 171(1), 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Greenfield, M. D. (1994). Synchronous and alternating choruses in insects and anurans: Common mechanisms and diverse functions. American Zoologist, 34(6), 605–615.

    Article  Google Scholar 

  • Gridi-Papp, M. (2008). The structure of vocal sounds produced with the mouth closed or with the mouth open in treefrogs. Journal of the Acoustical Society of America, 123(5), 2895–2902.

    Article  PubMed  Google Scholar 

  • Gridi-Papp, M. (2014). Is the frequency content of the calls in North American treefrogs limited by their larynges? International Journal of Evolutionary Biology, 2014, e198069.

    Article  Google Scholar 

  • Gridi-Papp, M., Feng, A. S., Shen, J.-X., Yu, Z.-L., Rosowski, J. J., & Narins, P. M. (2008). Active control of ultrasonic hearing in frogs. Proceedings of the National Academy of Sciences of the U S A, 105(31), 11014–11019.

    Article  CAS  Google Scholar 

  • Gridi-Papp, M., Rand, A. S., & Ryan, M. J. (2006). Animal communication: Complex call production in the túngara frog. Nature, 441(7089), 38.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, C. F., & Giaretta, A. A. (1999). Visual and acoustic communication in the Brazilian torrent frog, Hylodes asper (Anura: Leptodactylidae). Herpetologica, 55(3), 324–333.

    Google Scholar 

  • Halfwerk, W., Dixon, M. M., Ottens, K. J., Taylor, R. C., Ryan, M. J., Page, R. A., et al. (2014a). Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. The Journal of Experimental Biology, 217(17), 3038–3044.

    Article  PubMed  Google Scholar 

  • Halfwerk, W., Jones, P. L., Taylor, R. C., Ryan, M. J., & Page, R. A. (2014b). Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science, 343(6169), 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Hartley, R. S., & Suthers, R. A. (1989). Airflow and pressure during canary song: Direct evidence for mini-breaths. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 165(1), 15–26.

    Article  Google Scholar 

  • Hartmann, M. T., Giasson, L. O. M., Hartmann, P. A., & Haddad, C. F. B. (2005). Visual communication in Brazilian species of anurans from the Atlantic forest. Journal of Natural History, 39(19), 1675–1685.

    Article  Google Scholar 

  • Hetherington, T. E. (1985). Role of the opercularis muscle in seismic sensitivity in the bullfrog, Rana catesbeiana. Journal of Experimental Zoology, 235(1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Hetherington, T. E. (1987). Physiological features of the opercularis muscle and their effects on vibration sensitivity in the bullfrog Rana catesbeiana. Journal of Experimental Biology, 131(1), 189–204.

    CAS  PubMed  Google Scholar 

  • Hetherington, T. E. (1994). The middle ear muscle of frogs does not modulate tympanic responses to sound. Journal of the Acoustical Society of America, 95(4), 2122–2125.

    Article  CAS  PubMed  Google Scholar 

  • Hetherington, T. E., & Lombard, R. E. (1983). Electromyography of the opercularis muscle of Rana catesbeiana: An amphibian tonic muscle. Journal of Morphology, 175(1), 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Hibbitts, T. J., Whiting, M. J., & Stuart-Fox, D. M. (2007). Shouting the odds: vocalization signals status in a lizard. Behavioral Ecology and Sociobiology, 61(8), 1169–1176.

    Article  Google Scholar 

  • Hödl, W. (1992). Reproductive behaviour in the neotropical foam-nesting frog Pleurodema diplolistris (Leptodactylidae). Amphibia-Reptilia, 13(3), 263–274.

    Article  Google Scholar 

  • Hödl, W., & Gollmann, G. (1986). Distress calls in neotropical frogs. Amphibia-Reptilia, 7(1), 11–21.

    Article  Google Scholar 

  • Hoskin, C. J., James, S., & Grigg, G. C. (2009). Ecology and taxonomy-driven deviations in the frog call–body size relationship across the diverse Australian frog fauna. Journal of Zoology, 278(1), 36–41.

    Article  Google Scholar 

  • Hughes, G. M., & Vergara, G. A. (1978). Static pressure-volume curves for the lung of the frog (Rana pipiens). Journal of Experimental Biology, 76(1), 149–165.

    CAS  PubMed  Google Scholar 

  • Jaramillo, C., Rand, A. S., Ibáñez, R., & Dudley, R. (1997). Elastic structures in the vocalization apparatus of the túngara frog Physalaemus pustulosus (Leptodactylidae). Journal of Morphology, 233(3), 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Jenssen, T. A. (1972). Seasonal organ weights of the green frog, Rana clamitans (Anura, Ranidae), under natural conditions. Transactions of the Illinois State Academy of Science, 65, 15–24.

    Google Scholar 

  • Jørgensen, M. B., & Kanneworff, M. (1998). Middle ear transmission in the grass frog, Rana temporaria. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 182(1), 59–64.

    Google Scholar 

  • Kelley, D. B., & Tobias, M. L. (1999). Vocal communication in Xenopus laevis. In M. Hauser & M. Konishi (Eds.), Neural mechanisms of communication (pp. 9–35). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kelley, D. B., Tobias, M. L., Horng, S., & Ryan, M. J. (2001). Producing and perceiving frog songs: Dissecting the neural bases for vocal behaviors in Xenopus laevis. In M. J. Ryan (Ed.), Anuran communication (pp. 156–166). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Kime, N. M., Ryan, M. J., & Wilson, P. S. (2013). A bond graph approach to modeling the anuran vocal production system. The Journal of the Acoustical Society of America, 133(6), 4133–4144.

    Article  PubMed  Google Scholar 

  • Kirkpatrick, M., & Ryan, M. J. (1991). The evolution of mating preferences and the paradox of the lek. Nature, 350(6313), 33–38.

    Article  Google Scholar 

  • Lardner, B., & bin Lakim, M. (2002). Animal communication: Tree-hole frogs exploit resonance effects. Nature, 420(6915), 475.

    Article  CAS  PubMed  Google Scholar 

  • Largen, M. J., Morris, P. A., & Yalden, D. W. (1972). Observations on the caecilian Geotrypetes grandisonae Taylor (Amphibia Gymnophiona) from Ethiopia. Monitore Zoologico Italiano. Supplemento, 4(1), 185–205.

    Google Scholar 

  • Lewis, E. R., & Narins, P. M. (1985). Do frogs communicate with seismic signals? Science, 227(4683), 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. R., Narins, P. M., Cortopassi, K. A., Yamada, W. M., Poinar, E. H., Moore, S. W., et al. (2001). Do male white-lipped frogs use seismic signals for intraspecific communication? American Zoologist, 41(5), 1185–1199.

    Google Scholar 

  • Littlejohn, M. J., & Ryan, M. J. (2001). Patterns of differentiation in temporal properties of acoustic signals of anurans. In M. J. Ryan (Ed.), Anuran communication (pp. 102–120). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Liu, C. C. (1935). Types of vocal sac in the Salientia. Proceedings of the Boston Society of Natural History, 41, 19–40.

    Google Scholar 

  • Loftus-Hills, J. J., & Littlejohn, M. J. (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura: Microhylidae): A reexamination. Evolution, 46(4), 896–906.

    Article  Google Scholar 

  • Manley, G. A., & Kraus, J. E. (2010). Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. Journal of Experimental Biology, 213(11), 1876–1885.

    Article  PubMed  Google Scholar 

  • Martin, W. F. (1971). Mechanics of sound production in toads of the genus Bufo: Passive elements. Journal of Experimental Zoology, 176(3), 273–293.

    Article  CAS  PubMed  Google Scholar 

  • Martin, W. F., & Gans, C. (1972). Muscular control of the vocal tract during release signaling in the toad Bufo valliceps. Journal of Morphology, 137(1), 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Mason, M. J., & Narins, P. M. (2002a). Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum. Journal of Experimental Biology, 205(20), 3167–3176.

    PubMed  Google Scholar 

  • Mason, M. J., & Narins, P. M. (2002b). Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. Journal of Experimental Biology, 205(20), 3153–3165.

    PubMed  Google Scholar 

  • McAlister, W. H. (1961). The mechanics of sound production in North American Bufo. Copeia, 1961(1), 86–95.

    Article  Google Scholar 

  • Mitchell, N. J., Kearney, M. R., Nelson, N. J., & Porter, W. P. (2008). Predicting the fate of a living fossil: How will global warming affect sex determination and hatching phenology in tuatara? Proceedings of the Royal Society of London B: Biological Sciences, 275(1648), 2185–2193.

    Article  Google Scholar 

  • Moore, B. A., Russell, A. P., & Bauer, A. M. (1991). Structure of the larynx of the tokay gecko (Gekko gecko), with particular reference to the vocal cords and glottal lips. Journal of Morphology, 210(3), 227–238.

    Article  Google Scholar 

  • Nally, R. C. (1981). On the reproductive energetics of chorusing males: Energy depletion profiles, restoration and growth in two sympatric species of Ranidella (Anura). Oecologia, 51(2), 181–188.

    Article  Google Scholar 

  • Narins, P. M., Grabul, D. S., Soma, K. K., Gaucher, P., & Hödl, W. (2005). Cross-modal integration in a dart-poison frog. Proceedings of the National Academy of Sciences of the U S A, 102(7), 2425–2429.

    Article  CAS  Google Scholar 

  • Narins, P. M., Lewis, E. R., & McClelland, B. E. (2000). Hyperextended call note repertoire of the endemic Madagascar treefrog Boophis madagascariensis (Rhacophoridae). Journal of Zoology, 250(3), 283–298.

    Article  Google Scholar 

  • Neill, W. T. (1952). Remarks on salamander voices. Copeia, 1952, 195–196.

    Article  Google Scholar 

  • Nelson, N. J., Keall, S. N., Brown, D., & Daugherty, C. H. (2002). Establishing a new wild population of tuatara (Sphenodon guntheri). Conservation Biology, 16(4), 887–894.

    Article  Google Scholar 

  • Nelson, N. J., Thompson, M. B., Pledger, S., Keall, S. N., & Daugherty, C. H. (2004). Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming? International Congress Series, 1275, 250–257.

    Article  Google Scholar 

  • Paulsen, K. (1965). Beitrage zur anatomie und physiologie des froschkehlkopfes (mit besonderer berucksichtigung der stimmbildung). Zeitschrift für Wissenschaftliche Zoologie, 172, 1–16.

    Google Scholar 

  • Paulsen, K. (1967). Das prinzip der stimmbildung in der wirbeltierreihe und beim menschen. Frankfurt, Germany: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Pauly, G. B., Bernal, X. E., Rand, A. S., & Ryan, M. J. (2006). The vocal sac increases call rate in the túngara frog Physalaemus pustulosus. Physiological and Biochemical Zoology, 79(4), 708–719.

    Article  PubMed  Google Scholar 

  • Penna, M. (2004). Amplification and spectral shifts of vocalizations inside burrows of the frog Eupsophus calcaratus (Leptodactylidae). Journal of the Acoustical Society of America, 116(2), 1254–1260.

    Article  PubMed  Google Scholar 

  • Pfennig, K. S. (2007). Facultative mate choice drives adaptive hybridization. Science, 318(5852), 965–967.

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, K. S., & Simovich, M. A. (2002). Differential selection to avoid hybridization in two toad species. Evolution, 56(9), 1840–1848.

    Article  PubMed  Google Scholar 

  • Preininger, D., Boeckle, M., Freudmann, A., Starnberger, I., Sztatecsny, M., & Hödl, W. (2013). Multimodal signaling in the small torrent frog (Micrixalus saxicola) in a complex acoustic environment. Behavioral Ecology and Sociobiology, 67(9), 1449–1456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purgue, A. P. (1995). The sound broadcasting system of the bullfrog. PhD thesis, University of Utah.

    Google Scholar 

  • Purgue, A. P. (1997). Tympanic sound radiation in the bullfrog Rana catesbeiana. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 181(5), 438–445.

    Article  CAS  Google Scholar 

  • Rand, A. S. (2001). A history of frog call studies 405 BC to 1980. In M. J. Ryan (Ed.), Anuran communication (pp. 8–19). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Rand, A. S., & Dudley, R. (1993). Frogs in helium: The anuran vocal sac is not a cavity resonator. Physiological Zoology, 66(5), 793–806.

    Article  Google Scholar 

  • Refsnider, J. M., Keall, S. N., Daugherty, C. H., & Nelson, N. J. (2009). Does nest-guarding in female tuatara (Sphenodon punctatus) reduce nest destruction by conspecific females? Journal of Herpetology, 43(2), 294–299.

    Article  Google Scholar 

  • Romer, A. S., & Parsons, T. S. (1986). The vertebrate body. New York: Saunders College.

    Google Scholar 

  • Rosenthal, G. G., Rand, A. S., & Ryan, M. J. (2004). The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Animal Behaviour, 68(1), 55–58.

    Article  Google Scholar 

  • Russell, A. P., Rittenhouse, D. R., & Bauer, A. M. (2000). Laryngotracheal morphology of Afro-Madagascan geckos: A comparative survey. Journal of Morphology, 245(3), 241–268.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. J. (1980). Female mate choice in a neotropical frog. Science, 209(4455), 523–525.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. J. (1985). The túngara frog: A study in sexual selection and communication. Chicago: University of Chicago Press.

    Google Scholar 

  • Ryan, M. J. (2001). Anuran communication. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Ryan, M. J., Bartholomew, G. A., & Rand, A. S. (1983a). Energetics of reproduction in a neotropical frog, Physalaemus pustulosus. Ecology, 64(6), 1456–1462.

    Article  Google Scholar 

  • Ryan, M. J., & Drewes, R. C. (1990). Vocal morphology of the Physalaemus pustulosus species group (Leptodactylidae): Morphological response to sexual selection for complex calls. Biological Journal of the Linnean Society, 40(1), 37–52.

    Article  Google Scholar 

  • Ryan, M. J., Fox, J. H., Wilczynski, W., & Rand, A. S. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343, 66–67.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. J., & Rand, A. S. (1995). Female responses to ancestral advertisement calls in túngara frogs. Science, 269, 390–392.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. J., Tuttle, M. D., & Barclay, R. M. R. (1983b). Behavioral responses of the frog-eating bat, Trachops cirrhosus, to sonic frequencies. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 150(4), 413–418.

    Article  Google Scholar 

  • Sacchi, R., Galeotti, P., Fasola, M., & Gerzeli, G. (2004). Larynx morphology and sound production in three species of Testudinidae. Journal of Morphology, 261(2), 175–183.

    Article  PubMed  Google Scholar 

  • Schmid, E. (1978). Contribution to the morphology and histology of the vocal cords of central European anurans (Amphibia). Zoologische Jahrbucher Anatomie, 5, 133–150.

    Google Scholar 

  • Schmidt, R. S. (1965). Larynx control and call production in frogs. Copeia, 1965(2), 143–147.

    Article  Google Scholar 

  • Schmidt, R. S. (1972). Action of intrinsic laryngeal muscles during release calling in leopard frog. Journal of Experimental Zoology, 181(2), 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, H. (1970). Morphologie des larynx von Hyla a. arborea (L.) und Hyla meridionalis Boettger (Amphibia, Anura). Zoomorphology, 66(4), 299–309.

    Google Scholar 

  • Schwartz, J. J., & Wells, K. D. (1985). Intra- and interspecific vocal behavior of the neotropical treefrog Hyla microcephala. Copeia, 1985(1), 27–38.

    Article  Google Scholar 

  • Shen, J.-X., Xu, Z.-M., Feng, A. S., & Narins, P. M. (2011). Large odorous frogs (Odorrana graminea) produce ultrasonic calls. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(10), 1027–1030.

    Article  PubMed  Google Scholar 

  • Starnberger, I., Preininger, D., & Hödl, W. (2014). From uni-to multimodality: Towards an integrative view on anuran communication. Journal of Comparative Physiology A, 200(9), 777–787.

    Article  Google Scholar 

  • Strake, J., Luksch, H., & Walkowiak, W. (1994). Audio-motor interface in anurans. European Journal of Morphology, 32(2–4), 122–126.

    CAS  PubMed  Google Scholar 

  • Stuart, B. L. (2008). The phylogenetic problem of Huia (Amphibia: Ranidae). Molecular Phylogenetics and Evolution, 46, 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, B. K., & Wagner, W. E., Jr. (1988). Variation in advertisement and release calls, and social influences on calling behavior in the Gulf Coast toad (Bufo valliceps). Copeia, 1988, 1014–1020.

    Article  Google Scholar 

  • Suthers, R. A., Narins, P. M., Lin, W.-Y., Schnitzler, H.-U., Denzinger, A., Xu, C.-H., et al. (2006). Voices of the dead: Complex nonlinear vocal signals from the larynx of an ultrasonic frog. Journal of Experimental Biology, 209(24), 4984–4993.

    Article  PubMed  Google Scholar 

  • Taigen, T., & Wells, K. (1985). Energetics of vocalization by an anuran amphibian (Hyla versicolor). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 155(2), 163–170.

    Article  Google Scholar 

  • Taylor, R. C., & Ryan, M. J. (2013). Interactions of multisensory components perceptually rescue túngara frog mating signals. Science, 341(6143), 273–274.

    Article  CAS  PubMed  Google Scholar 

  • Thurow, G. R., & Gould, H. J. (1977). Sound production in a caecilian. Herpetologica, 33(2), 234–237.

    Google Scholar 

  • Tobias, M. L., Evans, B. J., & Kelley, D. B. (2011). Evolution of advertisement calls in African clawed frogs. Behaviour, 148(4), 519–549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias, M. L., Korsh, J., & Kelley, D. B. (2014). Evolution of male and female release calls in African clawed frogs. Behaviour, 151(9), 1313–1334.

    Article  Google Scholar 

  • Todd, N. P. M. (2007). Estimated source intensity and active space of the American alligator (Alligator mississippiensis) vocal display. The Journal of the Acoustical Society of America, 122(5), 2906–2915.

    Article  PubMed  Google Scholar 

  • Towns, D. R., & Daugherty, C. H. (1994). Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. New Zealand Journal of Zoology, 21(4), 325–339.

    Article  Google Scholar 

  • Trewavas, E. (1932). The hyoid and larynx of the Anura. Royal Society of London Philosophical Transactions Series B: Biological Sciences, 222, 401–527.

    Article  Google Scholar 

  • Uetz, P. (2014). The reptile database. Heidelberg, Germany: European Molecular Biology Laboratory. Retrieved May 8, 2015, from http://www.reptile-database.org.

  • Vergne, A. L., Aubin, T., Martin, S., & Mathevon, N. (2012). Acoustic communication in crocodilians: Information encoding and species specificity of juvenile calls. Animal Cognition, 15(6), 1095–1109.

    Article  PubMed  Google Scholar 

  • Vergne, A. L., & Mathevon, N. (2008). Crocodile egg sounds signal hatching time. Current Biology, 18(12), 513–514.

    Article  CAS  Google Scholar 

  • Vergne, A. L., Pritz, M. B., & Mathevon, N. (2009). Acoustic communication in crocodilians: From behaviour to brain. Biological Reviews, 84(3), 391–411.

    Article  CAS  PubMed  Google Scholar 

  • Vitalis, T. Z., & Shelton, G. (1990). Breathing in Rana pipiens: The mechanism of ventilation. Journal of Experimental Biology, 154(1), 537–556.

    Google Scholar 

  • Vitt, L. J., & Caldwell, J. P. (2013). Herpetology: An introductory biology of amphibians and reptiles (4th ed.). Boston: Academic.

    Google Scholar 

  • Wagner, W. E., Jr. (1989). Graded aggressive signals in Blanchard’s cricket frog: vocal responses to opponent proximity and size. Animal Behaviour, 38(6), 1025–1038.

    Article  Google Scholar 

  • Wagner, W. E., Jr. (1992). Deceptive or honest signaling of fighting ability? A test of alternative hypotheses for the function of changes in call dominant frequency by male cricket frogs. Animal Behaviour, 44(3), 449–462.

    Article  Google Scholar 

  • Walkowiak, W. (1992). Acoustic communication in the fire-bellied toad: An integrative neurobiological approach. Ethology Ecology and Evolution, 4(1), 63–74.

    Article  Google Scholar 

  • Walkowiak, W. (2006). Call production and neural basis of vocalization. In P. M. Narins, A. S. Feng, R. R. Fay, & A. N. Popper (Eds.), Hearing and sound communication in amphibians (pp. 87–112). New York: Springer.

    Chapter  Google Scholar 

  • Wang, X., Wang, D., Wu, X., Wang, R., & Wang, C. (2007). Acoustic signals of Chinese alligators (Alligator sinensis): Social communication. The Journal of the Acoustical Society of America, 121(5), 2984–2989.

    Article  PubMed  Google Scholar 

  • Weber, E. (1974). Comparative bio-acoustic investigations in the Discoglossus pictus, Otth 1837 and the Discoglossus sardus Tschudi 1837 (Discoglossidae, Anura). Zoologische Jahrbucher Physiologie, 78, 40–84.

    Google Scholar 

  • Weber, E., & Werner, Y. L. (1977). Vocalizations of two snake-lizards (Reptilia: Sauria: Pygopodidae). Herpetologica, 33(3), 353–363.

    Google Scholar 

  • Welch, A. M., Semlitsch, R. D., & Gerhardt, H. C. (1998). Call duration as an indicator of genetic quality in male gray tree frogs. Science, 280(5371), 1928–1930.

    Article  CAS  PubMed  Google Scholar 

  • Wells, K. D. (1988). The effect of social interactions on anuran vocal behavior. In B. Fritzsch, W. Wilczynski, M. J. Ryan, T. Hetherington, & W. Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 9–18). New York: Wiley.

    Google Scholar 

  • Wells, K. D. (2010). The ecology and behavior of amphibians. Chicago: University of Chicago Press.

    Google Scholar 

  • Wells, K. D., & Taigen, T. L. (1984). Reproductive behavior and aerobic capacities of male American toads (Bufo americanus): Is behavior constrained by physiology? Herpetologica, 40(3), 292–298.

    Google Scholar 

  • Wilczynski, W., & Chu, J. (2001). Acoustic communication, endocrine control, and the neurochemical systems of the brain. In M. J. Ryan (Ed.), Anuran communication (pp. 23–35). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Wilder, H. H. (1896). Lungless salamanders. Anatomischer Anzeiger, 12, 182–192.

    Google Scholar 

  • Wogel, H., Abrunhosa, P. A., & Weber, L. N. (2004). The tadpole, vocalizations and visual displays of Hylodes nasus (Anura: Leptodactylidae). Amphibia-Reptilia, 25(2), 219–226.

    Article  Google Scholar 

  • Woolbright, L. L., & Stewart, M. M. (1987). Foraging success of the tropical frog, Eleutherodactylus coqui: The cost of calling. Copeia, 1987, 69–75.

    Article  Google Scholar 

  • Yager, D. D. (1992). A unique sound production mechanism in the pipid anuran Xenopus borealis. Zoological Journal of the Linnean Society, 104(4), 351–375.

    Article  Google Scholar 

  • Yager, D. D. (1996). Sound production and acoustic communication in Xenopus borealis. In R. C. Tinsley & H. R. Kobel (Eds.), The biology of Xenopus (pp. 121–141). Oxford, England: Clarendon.

    Google Scholar 

  • Yamaguchi, A., & Kelley, D. B. (2000). Generating sexually differentiated vocal patterns: Laryngeal nerve and EMG recordings from vocalizing male and female African clawed frogs (Xenopus laevis). The Journal of Neuroscience, 20(4), 1559–1567.

    CAS  PubMed  Google Scholar 

  • Yang, E. J., & Kelley, D. B. (2008). Hormones and the regulation of vocal patterns in amphibians: Xenopus laevis vocalizations as a model system. In D. Pfaff, A. Arnold, A. Etgen, S. Fahrbach, & R. Rubin (Eds.), Hormones, brain, and behavior (pp. 693–706). New York: Academic.

    Google Scholar 

  • Young, B. A. (1991). Morphological basis of “growling” in the king cobra, Ophiophagus hannah. Journal of Experimental Zoology, 260(3), 275–287.

    Article  CAS  PubMed  Google Scholar 

  • Young, B. A. (2000). The comparative morphology of the larynx in snakes. Acta Zoologica, 81(2), 177–193.

    Article  Google Scholar 

  • Young, B. A. (2003). Snake bioacoustics: Toward a richer understanding of the behavioral ecology of snakes. The Quarterly Review of Biology, 78(3), 303–325.

    Article  PubMed  Google Scholar 

  • Young, B. A., Sheft, S., & Yost, W. (1995). Sound production in Pituophis melanoleucus (Serpentes: Colubridae) with the first description of a vocal cord in snakes. Journal of Experimental Zoology, 273(6), 472–481.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Peng, Y., Aowphol, A., Ding, L., Brauth, S. E., & Tang, Y.-Z. (2011). Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: Implications for regional population differentiation. Ethology Ecology and Evolution, 23(3), 211–228.

    Article  Google Scholar 

  • Zornik, E., & Kelley, D. B. (2008). Regulation of respiratory and vocal motor pools in the isolated brain of Xenopus laevis. The Journal of Neuroscience, 28(3), 612–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zornik, E., & Yamaguchi, A. (2008). Sexually differentiated central pattern generators in Xenopus laevis. Trends in Neurosciences, 31(6), 296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Cristina O. Gridi-Papp and the editors for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Gridi-Papp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colafrancesco, K.C., Gridi-Papp, M. (2016). Vocal Sound Production and Acoustic Communication in Amphibians and Reptiles. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_3

Download citation

Publish with us

Policies and ethics