Skip to main content
Log in

Postactivation inhibition of spontaneously active neurosecretory neurons in the medicinal leech

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Spontaneously active neurosecretory neurons in vertebrate and invertebrate nervous systems share similarities in firing frequencies, spike shapes, inhibition by the transmitters they themselves release and postactivation inhibition, an intensity-dependent period of suppressed spontaneous generation of action potentials following phases of high-frequency activity. High-frequency activation of spontaneously active serotonin-containing Retzius cells in isolated ganglia of the leech Hirudo medicinalis induced prolonged membrane hyperpolarisations causing periods of postactivation inhibition of up to 33 s. The duration of the inhibitory periods was directly related to both the number and rate of spikes during activation and was inversely proportional to a cell’s spontaneous firing frequency. The periods of postactivation inhibition remained unaffected by both serotonin depletion through repeated injections of 5,7-dihydroxytryptamine and suppressing the afterhyperpolarisation following each action potential with tetraethylammonium (TEA), iberiotoxin or charybdotoxin, suggesting that neither autoinhibition by synaptic release of serotonin nor calcium-activated potassium channels contribute to the underlying mechanism. In contrast, the postactivation inhibitory period was significantly affected both by differential electrical stimulation of the same Retzius cells via microelectrodes filled with molar concentrations of either Na+-acetate or K+-acetate, and by partial inhibition of Na+/K+-ATPase with ouabain. Thus, postactivation inhibition in Retzius cells results from prolonged hyperpolarising activity of Na+/K+-ATPase stimulated by the accumulation of cytosolic Na+ during phases of high-frequency spike activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5HT:

5-Hydroxytryptamine or serotonin

TEA:

Tetraethylammonium

5,7-DHT:

5,7-Dihydroxytryptamine

References

  • Aghajanian GK (1985) Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature 315:501–503

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Lakoski JM (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res 305:181–185

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Vandermaelen CP (1982) Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effect of LSD. Brain Res 238:463–469

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Sprouse JS, Rasmussen K (1987) Physiology of the midbrain serotonin system. In: Meltzer HY (eds) Psychopharmacology: the third generation of progress. Raven, New York, pp 141–149

    Google Scholar 

  • Angstadt JD, Friesen WO (1991) Synchronized oscillatory activity in leech neurons induced by calcium channel blockers. J Neurophysiol 66:1858–1873

    PubMed  CAS  Google Scholar 

  • Bayliss DA, Li YW, Talley EM (1997) Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance. J Neurophysiol 77:1349–1361

    PubMed  CAS  Google Scholar 

  • Baylor D, Nicholls JG (1969) After-effects of nerve impulses on signalling in the central nervous system of the leech. J Physiol 203:571–589

    PubMed  CAS  Google Scholar 

  • Beltz BS, Kravitz EA (1987) Physiological identification, morphological analysis, and development of identified serotonin–proctolin containing neurons in the lobster ventral nerve cord. J Neurosci 7:533–546

    PubMed  CAS  Google Scholar 

  • Bourque CW, Randle JC, Renaud LP (1985) Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. J Neurophysiol 54:1375–1382

    PubMed  CAS  Google Scholar 

  • Brown C (2004) Rhythmogenesis in vasopressin cells. J Neuroendocrinol 16:727–740

    Article  PubMed  CAS  Google Scholar 

  • Brunelli M, Demontis G, Traina G (1985) Modulation of an electrogenic pump as a mechanism of synaptic plasticity in leech ganglia. J Physiol Lond 369(Suppl):110

    Google Scholar 

  • Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220

    Article  PubMed  CAS  Google Scholar 

  • Burrell BD, Sahley CL (1999) Serotonin depletion does not prevent intrinsic sensitization in the leech. Learn Mem 6:509–520

    Article  PubMed  CAS  Google Scholar 

  • Caretta M (1988) The Retzius cells in the leech: a review of their properties and synaptic connections. Comp Biochem Physiol 91A(3):405–413

    Article  Google Scholar 

  • Catarsi S, Brunelli M (1991) Serotonin depresses the after-hyperpolarization through the inhibition of the Na+/K+ electrogenic pump in T sensory neurones of the leech. J Exp Biol 155:261–273

    PubMed  CAS  Google Scholar 

  • Catarsi S, Scuri R, Brunelli M (1993) Cyclic AMP mediates inhibition of the Na+–K+ electrogenic pump by serotonin in tactile sensory neurones of the leech. J Physiol Lond 462:229–242

    PubMed  CAS  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542

    Article  PubMed  CAS  Google Scholar 

  • Corotto F, Michel W (1998) Mechanisms of afterhyperpolarization in lobster olfactory receptor neurons. J Neurophysiol 80:1268–1276

    PubMed  CAS  Google Scholar 

  • Dean JA, Leake LD (1988) Pharmacological control of the pattern of activity in leech Retzius neurones. Comp Biochem Physiol C 89:31–38

    Article  PubMed  CAS  Google Scholar 

  • De-Miguel FF, Trueta C (2005) Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 25:297–312

    Article  PubMed  CAS  Google Scholar 

  • Derst C, Messutat S, Wather C, Eckert M, Heinemann SH, Wicher D (2003) The large conductance Ca2+-activated potassium channel (pSlo) of the cockroach Periplaneta americana: structure, localization and electrophysiology. Eur J Neurosci 17:1197–1212

    Article  PubMed  CAS  Google Scholar 

  • Doernberg SB, Cromarty SI, Heinrich R, Beltz BS, Kravitz EA (2001) Agonistic behavior in naive juvenile lobsters depleted of serotonin by 5,7-dihydroxytryptamine. J Comp Physiol A 187:91–103

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich JS, Boulis NM, Karrer T, Sahley CL (1992) Differential effects of serotonin depletion on sensitization and dishabituation in the leech, Hirudo medicinalis. J Neurobiol 23:270–279

    Article  PubMed  CAS  Google Scholar 

  • Feigenspan A, Gustincich S, Bean BP, Raviola E (1998) Spontaneous activity of solitary dopaminergic cells of the retina. J Neurosci 18:6776–6789

    PubMed  CAS  Google Scholar 

  • French AS (1989) Ouabain selectively affects the slow component of sensory adaptation in an insect mechanoreceptor. Brain Res 504:112–114

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perez E, Vargas-Caballero M, Velazquez-Ulloa N, Minzoni A, De-Miguel FF (2004) Synaptic integration in electrically coupled neurons. Biophys J 86:646–655

    PubMed  CAS  Google Scholar 

  • Goldstein SAN, Miller C (1993) Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J 65:1613–1619

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866–2876

    PubMed  CAS  Google Scholar 

  • Heinrich R, Cromarty SI, Hörner M, Edwards DH, Kravitz EA (1999) Autoinhibition of serotonin cells: an intrinsic regulatory mechanism sensitive to the pattern of usage of the cells. Proc Natl Acad Sci USA 96:2473–2478

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Bräunig P, Walter I, Schneider H, Kravitz EA (2000) Aminergic neuron systems of lobsters: morphology and electrophysiology of octopamine-containing neurosecretory cells. J Comp Physiol A 186:617–629

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Hörner M, Cromarty SI, Kravitz EA (2002) Intrinsic properties of amine-containing neurosecretory cells of lobster: spontaneous activity and autoinhibition. In: Wiese K (eds) The crustacean nervous system. Springer, Berlin Heidelberg New York, pp 173–186

    Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sinauer press, Sunderland

    Google Scholar 

  • Hjorth S (1993) Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J Neurochem 60:776–779

    Article  PubMed  CAS  Google Scholar 

  • Hochstrate P, Schlue W (2001) The ouabain-induced Ca2+ increase in leech Retzius neurones is mediated by voltage-dependent Ca2+ channels. Brain Res 892:248–254

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Fornal CA (1997) Serotonin and motor activity. Curr Opin Neurobiol 7:820–825

    Article  PubMed  CAS  Google Scholar 

  • Jansen JKS, Nicholls JG (1973) Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses. J Physiol Lond 229:635–655

    PubMed  CAS  Google Scholar 

  • Kerkut GA, Walker RJ (1967) The action of acetylcholine, dopamine and 5-hydroxytryptamine on the spontaneous activity of the cells of Retzius of the leech, Hirudo medicinalis. Br J Pharmacol 30:644–654

    CAS  Google Scholar 

  • Kita T, Kita H, Kitai ST (1986) Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation. Brain Res 372:21–30

    Article  PubMed  CAS  Google Scholar 

  • Kleinhaus AL, Prichard JW (1974) Electrophysiological properties of the giant neurons of the leech subesophageal ganglion. Brain Res 72:332–336

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Kravitz EA (1978) The physiological properties of amine-containing neurones in the lobster nervous system. J Physiol 279:215–229

    PubMed  CAS  Google Scholar 

  • Kravitz EA (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol A 186:221–238

    Article  PubMed  CAS  Google Scholar 

  • Leake LD, Koubanakis M (1995) Central and peripheral 5-HT receptors in the leech (Hirudo medicinalis) redefined. Gen Pharmacol 26:1709–1717

    PubMed  CAS  Google Scholar 

  • Lent CM (1977) The Retzius cells within the central nervous system of leeches. Prog Neurobiol 8:81–117

    Article  PubMed  CAS  Google Scholar 

  • Lent CM, Dickinson MH (1984) Retzius cells retain functional membrane properties following ‘ablation’ by the neurotoxin 5,7-DHT. Brain Res 300:167–171

    Article  PubMed  CAS  Google Scholar 

  • Lent CM, Ono J, Keyser KT, Karten HJ (1979) Identification of serotonin within vital-stained neurons from leech ganglia. J Neurochem 32:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Lent CM, Zundel D, Freedman E, Groome JR (1991) Serotonin in the leech central nervous system: anatomical correlates and behavioral effects. J Comp Physiol A 168:191–200

    Article  PubMed  CAS  Google Scholar 

  • Lessmann V, Dietzel I (1991) Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis). J Neurosci 11:800–809

    PubMed  CAS  Google Scholar 

  • Lombardo P, Scuri R, Cataldo E, Calvani M, Nicolai R, Mosconi L, Brunelli M (2004) Acetyl-L-carnitine induces a sustained potentiation of the afterhyperpolarization. Neuroscience 128:293–303

    Article  PubMed  CAS  Google Scholar 

  • Ma PM, Weiger WA (1993) Serotonin-containing neurons in lobsters: the actions of gamma-aminobutyric acid, octopamine, serotonin, and proctolin on activity of a pair of identified neurons in the first abdominal ganglion. J Neurophysiol 69:2015–2029

    PubMed  CAS  Google Scholar 

  • Marsden CA, Kerkut GA (1969) Fluorescent microscopy of the 5HT- and catecholamine-containing cells in the central nervous system of the leech Hirudo medicinalis. Comp Biochem Physiol 31:851–862

    Article  PubMed  CAS  Google Scholar 

  • McAdoo DJ, Coggeshall RE (1976) Gas chromatographic-mass spectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis. J Neurochem 26:163–177

    PubMed  CAS  Google Scholar 

  • Merz C (1995) Segmental specialization of calcium-activated potassium conductances in an identified leech neuron. J Neurophysiol 73:957–963

    PubMed  CAS  Google Scholar 

  • Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJ, Lamb JF, Martin-Vasallo P (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  PubMed  CAS  Google Scholar 

  • Morita K, David G, Barrett JN, Barrett EF (1993) Posttetanic hyperpolarization produced by electrogenic Na+–K+ pump in lizard axons impaled near their motor terminals. J Neurophysiol 70:1874–1884

    PubMed  CAS  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the leech. Cold Spring Harbor Press

  • Nakajima S, Takahashi K (1966) Post-tetanic hyperpolarization in stretch receptor neurone of crayfish. Nature 209:1220–1221

    Article  PubMed  CAS  Google Scholar 

  • Park C-S, Hausdorff SF, Miller C (1991) Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of K+ channels. Proc Natl Acad Sci USA 88:2046–2050

    Article  PubMed  CAS  Google Scholar 

  • Parker D, Hill R, Grillner S (1996) Electrogenic pump and a Ca2+-dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons. J Neurophysiol 76:540–553

    PubMed  CAS  Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. Part I. Serotonin-1 receptors. Brain Res 346:205–230

    Article  PubMed  CAS  Google Scholar 

  • Rude S (1969) Monoamine containing neurons in the central nervous system and peripheral nerves of the leech Hirudo medicinalis. J Comp Neurol 136:349–371

    Article  Google Scholar 

  • Sachs L (2004) Angewandte statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Scuri R, Mozzachiodi R, Brunelli M (2002) Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech. J Neurophysiol 88:2490–2500

    Article  PubMed  CAS  Google Scholar 

  • Scuri R, Mozzachiodi R, Brunelli M (2005) Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons. J Neurophysiol 94:1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Sobel E, Tank D (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826

    Article  CAS  PubMed  Google Scholar 

  • Sokolove PG, Cooke IM (1971) Inhibition of impulse activity in a sensory neuron by an electrogenic pump. J Gen Physiol 57:125–163

    Article  PubMed  CAS  Google Scholar 

  • Stewart RR, Nicholls JG, Adams WB (1989) Na+, K+ and Ca2+ currents in identified leech neurones in culture. J Exp Biol 141:1–20

    PubMed  CAS  Google Scholar 

  • Szczupak L, Kristan WB Jr (1995) Widespread mechanosensory activation of the serotonergic system of the medicinal leech. J Neurophysiol 74:2614–2624

    PubMed  CAS  Google Scholar 

  • Tobin AE, Calabrese RL (2005) Myomodulin increases Ih and inhibits the Na/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 94:3938–3950

    Article  PubMed  CAS  Google Scholar 

  • Trueta C, Méndez B, De-Miguel FF (2003) Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurones. J Physiol 547:405–416

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC (1973) The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech. J Physiol Lond 230:509–534

    PubMed  Google Scholar 

  • Velázquez-Ulloa N, Blackshaw SE, Szczupak L, Trueta C, García E, De-Miguel FF (2003) Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. J Neurobiol 54:604–617

    Article  PubMed  Google Scholar 

  • Verge D, Daval G, Patey A, Gozlan H, El Mestikawy S, Hamon M (1985) Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113:463–464

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJA, Kristan WB Jr, Kleinhaus AL (1996) An increase in activity of serotonergic Retzius neurones may not be necessary for the consummatory phase of feeding in the leech Hirudo medicinalis. J Exp Biol 199:1405–1414

    PubMed  CAS  Google Scholar 

  • Yang J, Lent CM (1983) Calcium depletion produces Na+-dependent, sustained depolarizations of Retzius cell membranes in the leech CNS. J Comp Physiol A 150:499–507

    Article  Google Scholar 

  • Yau K (1976) Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech. J Physiol Lond 263:513–538

    PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zhang X, Wilson RJ, Li Y, Kleinhaus AL (2000) Chemical and thermal stimuli have short-lived effects on the Retzius cell in the medicinal leech. J Neurobiol 43:304–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maike Hartisch, Anja Weinrich and Thorin Jonsson for their help with electrophysiological recordings and statistical analysis. We also thank Elizabeth Dennison for correcting the English and two anonymous reviewers for their valuable suggestions for improvement of an earlier version of the manuscript. The experiments of this study comply with the “Principles of animal care”, publication No. 86–23, revised 1985 of the National Institute of Health, and also with the German law “Deutsches Tierschutzgesetz”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gocht, D., Heinrich, R. Postactivation inhibition of spontaneously active neurosecretory neurons in the medicinal leech. J Comp Physiol A 193, 347–361 (2007). https://doi.org/10.1007/s00359-006-0190-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0190-x

Keywords

Navigation