Skip to main content
Log in

9-Phenanthrol modulates postinhibitory rebound and afterhyperpolarizing potentials in an excitatory motor neuron of the medicinal leech

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Postinhibitory rebound (PIR) responses in leech dorsal excitatory motor neurons (cell DE-3) are eliminated by Ca2+ channel blockers but also exhibit a strong dependence on extracellular Na+. These features could be explained by a voltage-gated Ca2+ current acting in concert with a Ca2+-activated nonspecific current (ICAN). In vertebrates, ICAN is associated with TRPM4 channels which are blocked selectively by 9-phenanthrol. Here, we show that 9-phenanthrol selectively inhibits a late phase of PIR and simultaneously enhances afterhyperpolarizing potentials (AHPs). Bath application of NNC 55-0396 or Cd2+ combined with ion substitution experiments indicate that a low-voltage-activated Ca2+ current plays a key role in generating PIR and that Ca2+ influx through low- or high-voltage-activated Ca2+ channels can trigger AHPs via activation of a Ca2+-dependent K+ current. We also demonstrate modulation of rebound responses by other ICAN blockers such as gadolinium and flufenamic acid, as well as the calmodulin antagonist W-7. We discuss how these results provide additional insights into the specific types of ionic currents underlying rebound responses of motor neuron DE-3 in the medicinal leech.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AHP:

Afterhyperpolarization

BAPTA:

1,2-Bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

BK:

Big or large conductance subtype of K(Ca) channels

CAM:

Calmodulin

DE-3:

Dorsal excitatory motor neuron 3

DMSO:

Dimethyl sulfoxide

FFA:

Flufenamic acid

HVA:

High-voltage activated

ICa :

Voltage-gated Ca2+ current

ICAN :

Ca2+-activated nonspecific current

IKCa :

Ca2+-activated K+ current

IK:

Intermediate conductance subtype of K(Ca) channels

INaP :

Persistent Na+ current

K(Ca):

Calcium-activated potassium

Kir :

Inward rectifier

LVA:

Low-voltage activated

NNC:

NNC 55-0396

PIR:

Postinhibitory rebound

SK:

Small conductance subtype of K(Ca) channels

TRPM4:

Transient receptor potential ion channel (melastatin related, member 4)

V m :

Membrane potential

W-7:

N-(6-aminohexyl)-5-Chloro-1-naphthalene-sulfonamide hydrochloride

References

  • Amarouch MY, Syam N, Abriel H (2013) Biochemical, single-channel, whole-cell patch clamp, and pharmacological analyses of endogenous TRPM4 channels in HEK293 cells. Neurosci Lett 541:105–110

    Article  CAS  PubMed  Google Scholar 

  • Andrade R, Foehring RC, Tzingounis AV (2012) The calcium-activated slow AHP: cutting through the Gordian knot. Front Cell Neurosci 6:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angstadt JD, Calabrese RL (1989) A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. J Neurosci 9:2846–2857

    CAS  PubMed  Google Scholar 

  • Angstadt JD, Calabrese RL (1991) Calcium currents and graded synaptic transmission between heart interneurons of the leech. J Neurosci 11:746–759

    CAS  PubMed  Google Scholar 

  • Angstadt JD, Friesen WOF (1991) Synchronized oscillatory activity in leech neurons induced by calcium channel blockers. J Neurophysiol 66:1858–1873

    CAS  PubMed  Google Scholar 

  • Angstadt JD, Simone AM (2014) Riluzole suppresses postinhibitory rebound in an excitatory motor neuron of the medicinal leech. J Comp Physiol A 200:759–775

    Article  Google Scholar 

  • Angstadt JD, Grassmann JL, Theriault KM, Levasseur SM (2005) Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech. J Comp Physiol A 191:715–732

    Article  CAS  Google Scholar 

  • Arbas EA, Calabrese RL (1987) Ionic conductances underlying the activity of interneurons that control heartbeat in the medicinal leech. J Neurosci 7:3945–3952

    CAS  PubMed  Google Scholar 

  • Ascoli GA, Gasparini S, Medinilla V, Migliore M (2010) Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. J Neurosci 30:6434–6442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the past decade? CNS Neurosci Ther 17:4–31

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Cazalets J (1998) Postinhibitory rebound during locomotor-like activity in neonatal rat motoneurons in vitro. J Neurophysiol 79:342–351

    CAS  PubMed  Google Scholar 

  • Biagi BA, Enyeart JJ (1990) Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am J Physiol 259:C515–C520

    CAS  PubMed  Google Scholar 

  • Blatz AL, Magleby KL (1987) Calcium-activated potassium channels. Trends Neurosci 10:463–467

    Article  CAS  Google Scholar 

  • Boland LM, Brown TA, Dingledine R (1991) Gadolinium block of calcium channels: influence of bicarbonate. Brain Res 563:142–150

    Article  CAS  PubMed  Google Scholar 

  • Burrell BD, Crisp KM (2008) Serotonergic modulation of afterhyperpolarization in a neuron that contributes to learning in the leech. J Neurophysiol 99:605–616

    Article  PubMed  Google Scholar 

  • Calabrese RL, Angstadt JD, Arbas EA (1989) A neural oscillator based on reciprocal inhibition. In: Carew TJ, Kelly D (eds) Perspectives in neural systems and behavior. Liss, New York, pp 33–50

    Google Scholar 

  • Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    Article  CAS  PubMed  Google Scholar 

  • Demion M, Bois P, Launay P, Guijnamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovas Res 73:531–538

    Article  CAS  Google Scholar 

  • Faber ESL, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194

    Article  CAS  PubMed  Google Scholar 

  • Ferrera L, Caputo A, Galietta LJV (2010) TMEM16A protein: a new identity for Ca2+-dependent Clchannels. Physiol 25:357–363

    Article  CAS  Google Scholar 

  • Gardam KE, Geiger JE, Hickey CM, Hung AY, Magoski NS (2008) Flufenamic acid affects multiple currents and causes intracellular Ca2+ release in Aplysia bag cell neurons. J Neurophysiol 100:38–49

    Article  CAS  PubMed  Google Scholar 

  • Garland CJ, Smirnov SV, Bagher P, Lim CS, Huang CY, Mitchell R, Stanley C, Pinkney A, Dora KA (2015) TRPM4 inhibitor 9-phenanthrol activates endothelial cell intermediate conductance calcium-activated potasium channels in rat isolated mesenteric artery. Brit J Phamacol 172:1114–1123

    Article  CAS  Google Scholar 

  • Gees M, Owsianik G, Nilius B, Voets T (2012) TRP channels. Compr Physiol 2:563–608

    PubMed  Google Scholar 

  • Gocht D, Heinrich R (2007) Postactivation inhibition of spontaneously active neurosecretory neurons in the medicinal leech. J Comp Physiol A 193:347–361

    Article  Google Scholar 

  • Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R (2008) 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharm 153:1697–1705

    Article  CAS  Google Scholar 

  • Guinamard R, Sallé L, Simard C (2011) The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv Exp Med Biol 704:147–171

    Article  CAS  PubMed  Google Scholar 

  • Guinamard R, Hof T, Del Negro CA (2014) The TRPM4 channel inhibitor 9-phenanthrol. Br J Pharmacol 171:1600–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BJ, Delaney KR (2002) Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb. J Physiol 543:819–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalmic nucleus neurons in vitro. J Neurosci 23:7525–7542

    CAS  PubMed  Google Scholar 

  • Harris-Warrick RM (2010) General principle of rhythmogenesis in central pattern networks. Prog Brain Res 187:213–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibsh D, Schori H, Efroni S, Shefi O (2015) De novo transcriptome assembly databases for the central nervous system of the medicinal leech. Sci Data 2:150015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland MA

    Google Scholar 

  • Hof T, Sallé L, Coulbault L, Richer R, Alexandre J, Rouet R, Manrique A, Guinamard R (2016) TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres. J Physiol 594(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-Nmethylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 309:193–199

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Getting PA (1991) Electrophysiological properties of neurons within the nucleus ambiguous of adult guinea pigs. J Neurophysiol 66:744–761

    CAS  PubMed  Google Scholar 

  • Jones BR, Thompson SH (2001) Mechanism of postinhibitory rebound in molluscan neurons. Amer Zool 41:1036–1048

    Google Scholar 

  • Kadiri LR, Kwan AC, Webb WW, Harris-Warrick RM (2011) Dopamine-induced oscillations of the pyloric pacemaker neuron rely on release of calcium from intracellular stores. J Neurophysiol 106:1288–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kang E, Makino Y, Park S, Shin JH, Song H, Launay P, Linden DJ (2013) Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells. J Neurophysiol 109:1174–1181

    Article  CAS  PubMed  Google Scholar 

  • Kochetkov KV, Kazachenko VN, Marinov BS (2000) Dose-dependent potentiation and inhibition of single Ca2+-activated K+ channels by flufenamic acid. Membr Cell Biol 14:285–298

    CAS  PubMed  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharengerg AM, PennerR Kinet JP (2002) TRPM4 Is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, Shaw T, Sandquist M, Partridge LD (1996) Mechanism of action of the nonsteroidal anti-inflammatory drug flufenamate on [Ca2+], and Ca2+-activated currents in neurons. Cell Calcium 19:431–438

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Duan W, SneydJ Herison AE (2010) Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J Neurosci 30:6214–6224

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Dalton JF, Stokes DR, Calabrese RL (1997) Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons. J Neurophysiol 77:1779–1794

    CAS  PubMed  Google Scholar 

  • Mangan PS, Curran GA, Hurney CA, Friesen WO (1994) Modulation of swimming behavior in the medicinal leech. III. Control of cellular properties in motor neurons by serotonin. J Comp Physiol A 175:709–722

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • Merz DC (1995) Segmental specialization of calcium-activated potassium conductances in an identified leech neuron. J Neurophysiol 73:957–963

    CAS  PubMed  Google Scholar 

  • Mironov SL (2008) Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J Physiol 586(9):2277–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426

    Article  CAS  PubMed  Google Scholar 

  • Munsch T, Schlue WR (1993) Intracellular chloride activity and the effect of 5-hydroxytryptamine on the chloride conductance of leech Retzius neurons. Eur J Neurosci 5:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    Article  CAS  PubMed  Google Scholar 

  • Oliván-Viguera A, Valero MS, Murillo MD, Wulff H, García-Otín ÁL, Arbonés-Mainar JM, Köhler R (2013) Novel phenolic inhibitors of small/intermediate-conductance Ca2+-activated K+ channels, KCa3.1 and KCa2.3. PLoS One 8:e58614. doi:10.1371/journal.pone.0058614

    Article  PubMed  PubMed Central  Google Scholar 

  • Opdyke CA, Calabrese RL (1994) A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech. J Comp Physiol A 175:781–789

    Article  CAS  PubMed  Google Scholar 

  • Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBӧtzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge LD, Valenzuela CF (2000) Block of hippocampal CAN channels by flufenamate. Brain Res 867:143–148

    Article  CAS  PubMed  Google Scholar 

  • Perez-Etchegoyen CB, Alvarez RJ, Rodriguez MJ, Szczupak L (2012) The activity of leech motoneurons during motor patterns is regulated by intrinsic properties and synaptic inputs. J Comp Physiol 198:239–251

    Article  Google Scholar 

  • Reboreda A, Jimenez-Diaz L, Navarro-Lopez JD (2011) TRP channels and neural persistent activity. In: Islam MS (ed) Transient receptor potential channels. Springer, Netherlands, pp 595–613

    Chapter  Google Scholar 

  • Rela L, Yang SM, Szczupak L (2009) Calcium spikes in a leech nonspiking neuron. J Comp Physiol A 195:139–150

    Article  CAS  Google Scholar 

  • Roberts A, Tunstall MJ (1990) Mutual re-excitation with post-inhibitory rebound: a simulaton study on the mechanisms for locomotor rhythm generation in the spinal cord of Xenopus embryos. Eur J Neurosci 2:11–23

    Article  CAS  PubMed  Google Scholar 

  • Satterlie RA (1985) Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science 229:402–404

    Article  CAS  PubMed  Google Scholar 

  • Schlue WR, Deitmer JW (1980) Extracellular potassium in neuropile and nerve cell body region of the leech central nervous system. J Exp Biol 87:23–43

    CAS  PubMed  Google Scholar 

  • Senatore A, Guan W, Boone AN, Spafford JD (2014a) T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter. J Biol Chem 289:11952–11969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senatore A, Guan W, Spafford JD (2014b) Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch Eur J Physiol 466:645–660

    Article  CAS  Google Scholar 

  • Shah MM, Javadzadeh-Tabatabaie M, Benton DCH, Ganellin CR, Haylett DG (2006) Enhancement of hippocampal pyramidal cell excitability by the novel selective slow- afterhyperpolarization channel blocker 3-(triphenylmethylaminomethyl)pyridine (UCL2077). Mol Pharmacol 70:1494–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw et al (1995) Action of diphenylamine carboxylate derivatives, a family of non-steroidal anti-inflammatory drugs, on [Ca2+]i and Ca2+-activated channels in neurons. Neurosci Lett 190:121–124

    Article  CAS  PubMed  Google Scholar 

  • Shimamura K, Zhou M, Ito Y, Kimura S, Zou LB, Sekigugchi R, Kitamura K, Sunano S (2002) Effects of flufenamic acid on smooth muscle of the carotid artery isolated from spontaneously hypertensive rats. J Smooth Mus Res 38:39–50

    Article  CAS  Google Scholar 

  • Simard C, Sallé L, Rouet R, Guinamard R (2012) Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 165:2354–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon TW, Opdyke CA, Calabrese RL (1992) Modulatory effects of FMRF-NH2 on outward currents and oscillatory activity in heart interneurons of the leech. J Neurosci 12:525–537

    CAS  PubMed  Google Scholar 

  • Stewart RR, Nicholls JG, Adams WB (1989) Na+, K+ and Ca2+ currents in identified leech neurons in culture. J Exp Biol 141:1–20

    CAS  PubMed  Google Scholar 

  • Stocker M, Hirzel K, D’hoedt D D, Pedarzani P (2004) Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43:933–949

    Article  CAS  PubMed  Google Scholar 

  • Straub VA, Benjamin PR (2001) Extrinsic modulation and motor pattern generation in a feeding network: a cellular study. J Neurosci 21:1767–1778

    CAS  PubMed  Google Scholar 

  • Tano MC, Vilarchao ME, Szczupak L (2015) Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance. J Neurophysiol 114:332–340

    Article  CAS  Google Scholar 

  • Tierney AJ, Harris-Warrick RM (1992) Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J Neurophysiol 67:599–609

    CAS  PubMed  Google Scholar 

  • Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Grillner S, Wallén P (2011) 5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey. J Neurophysiol 105:1212–1224

    Article  CAS  PubMed  Google Scholar 

  • Wessel R, Kristan WB, Kleinfeld D (1999a) Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an “inward rectifier”. J Neurosci 19:5875–5888

    CAS  PubMed  Google Scholar 

  • Wessel R, Kristan WB, Kleinfeld D (1999b) Dendritic Ca2+-activated K+ conductances regulate electrical signal propagation in an Invertebrate neuron. J Neurosci 19:8319–8326

    CAS  PubMed  Google Scholar 

  • Wu N, Enomoto A, Tanaka S, Hsiao C, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93:2710–2722

    Article  CAS  PubMed  Google Scholar 

  • Wu LJ, Sweet TB, Clapham DE (2010) International union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Isa T (2003) Ca2+-dependent inward current induced by nicotinic receptor activation depends on Ca2+/calmodulin-CaMKII pathway in dopamine neurons. Neurosci Res 47:225–232

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wotton JF, Harris-Warrick RM (1995) Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. II. Calcium-activated slow inward current. J Neurophysiol 74:1938–1946

    CAS  PubMed  Google Scholar 

  • Zhang L, Renaud LP, Kolaj M (2009) Properties of a T-type Ca2+ channel–activated slow afterhyperpolarization in thalamic paraventricular nucleus and other thalamic midline neurons. J Neurophysiol 101:2741–2750

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Kolaj M, Renaud LP (2010) Ca2+-dependent and Na+-dependent K+ conductances contribute to a slow AHP in thalamic paraventricular nucleus neurons: a novel target for orexin receptors. J Neurophysiol 104:2052–2062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible by generous support from Siena College, including a Summer Scholars Research Fellowship to JRG. The authors thank Nicole Nocera for preliminary experiments using W-7 and Matthew Rebel for his assistance. All experiments are in accordance with current laws on animal experimentation and care in the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Angstadt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The authors declare that experiments were conducted in compliance with current laws of the United States of America.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angstadt, J.D., Giordano, J.R. & Goncalves, A.J. 9-Phenanthrol modulates postinhibitory rebound and afterhyperpolarizing potentials in an excitatory motor neuron of the medicinal leech. J Comp Physiol A 203, 613–633 (2017). https://doi.org/10.1007/s00359-017-1178-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1178-4

Keywords

Navigation