Skip to main content
Log in

Defective transfer of seminal-fluid materials during matings of semi-fertile fruitless mutants in Drosophila

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In context of the semi-sterility exhibited by Drosophila males expressing certain mating-enabling fruitless (fru) mutant genotypes, we examined the transfer of seminal fluid using a transgene that encodes the Sex Peptide (SP) oligopeptide fused to Green Fluorescent Protein (GFP). We found that this fusion construct expresses SP-GFP in a valid manner within accessory glands of the male reproductive system in normal and fru-mutant males. Transfer of SP-GFP to live females was readily detectable during and after copulation. With respect to the pertinent combinations of fru mutations, we demonstrated that these abnormal genotypes cause males to transmit mating-related materials in two aberrant ways: one involving whether any seminal-fluid entities are transferred at all during a given mating; the other revealing an intriguing aspect of these fruitless effects, such that the mutations in question cause males to transfer female-affecting materials in a manner that varies among copulations. In this regard, certain mutant males that do not transfer SP nevertheless are able to transfer sperm: a fru-mated female possessing no GFP who was not fecund initially could produce progeny when seminal-fluid proteins were subsequently supplied by mating with a male that was spermless owing to the effects of a tudor mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACP26a:

A male accessory-gland seminal-fluid protein (encoded by a gene within 26a region of second chromosome)

ACP70a:

Synonymous with Sex Peptide, an accessory-gland seminal-fluid protein (encoded by a gene within 70a region of third chromosome)

ANOVA:

Analysis of variance

CI:

Courtship Index, proportion of an observation period during which male-female courtship interactions occur

CyO :

An inverted, dominantly marked balancer for the second chromosome

IPTG:

Isopropyl-β-d-1-thio-galactoside, an inducer of E. coli’s lactose-operon regulatory sequence

fru :

The fruitless gene, involved in male courtship and mating, or (for non + superscripted versions of the fru symbol) mutations of this gene

gal4/GAL4:

galactose-4 yeast gene and its transcription-factor product

MKRS :

An inverted, dominantly marked balancer for the third chromosome

PBS:

Phosphate-buffered saline

PBS-GFP-S65T:

A molecular vector containing DNA encoding modified form of Green Fluorescent Protein

pBSSP:

Vector containing part of Sex Peptide coding-sequence DNA

pBSSP-GFP:

Vector containing full Sex Peptide coding sequence and that encoding Green Fluorescent Protein

pCaSpeR4:

Vector used to generate germ-line transformants of Drosophila

pQE31:

Bacterial-expression plasmid

pQESP:

Derivative of pQE31 containing part of Sex Peptide coding sequence

pQESP-GFP:

Vector containing part of Sex Peptide coding sequence and that encoding Green Fluorescent Protein

PCR:

Polymerase chain reaction

Pdf-gal4 :

Transgene with Pigment dispersing factor gene regulatory sequence fused to one encoding yeast GAL4

SP:

Sex Peptide

SP-GFP :

Transgene with Sex Peptide gene regulatory sequence fused to one encoding Green Fluorescent Protein

TM3 :

An inverted, dominantly marked balancer for the third chromosome

tud :

The tudor gene, involved in germ-cell development, or (with superscripted tud symbol) a mutation of this gene

UAS-gfp :

Transgene with Upstream Activating Sequences (DNA targets of yeast GAL4) fused to a sequence encoding Green Fluorescent Protein

WT:

Wild type

References

  • Acebes A, Grosjean Y, Everaerts C, Ferveur J-F (2004) Cholinergic control of synchronized seminal emissions in Drosophila. Curr Biol 14:704–710

    Article  PubMed  CAS  Google Scholar 

  • Baker BS, Taylor BJ, Hall JC (2001) Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell 105:13–24

    Article  PubMed  CAS  Google Scholar 

  • Bertram MJ, Neubaum DM, Wolfner MF (1996) Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem Mol Biol 26:971–980

    Article  PubMed  CAS  Google Scholar 

  • Billeter JC, Goodwin SF, O’Dell KM (2002) Genes mediating sex-specific behaviors in Drosophila. Adv Genet 47:87–116

    PubMed  CAS  Google Scholar 

  • Boswell RE, Mahowald AP (1985) tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43:97–104

    Article  PubMed  CAS  Google Scholar 

  • Castrillon DH, Gonczy P, Alexander S, Rawson R, Eberhart CG, Viswanathan S, DiNardo S, Wasserman SA (1993) Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 135:489–505

    PubMed  CAS  Google Scholar 

  • Chan B, Villella A, Funes P, Hall JC (2002) Courtship and other behaviors affected by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila. Genetics 162:135–153

    PubMed  CAS  Google Scholar 

  • Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54:291–298

    Article  PubMed  CAS  Google Scholar 

  • Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK, Partridge L (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100:9923–9928

    Article  PubMed  CAS  Google Scholar 

  • Connolly K, Cook R (1973) Rejection responses by female Drosophila melanogaster: their ontogeny, causality and effects upon behaviour of the courting male. Behaviour 44:142–166

    Article  Google Scholar 

  • Drapeau MD, Cyran SA, Viering MM, Geyer PK, Long AD (2006) A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. Genetics 172:1009–1030

    Article  PubMed  CAS  Google Scholar 

  • Gailey DA, Lacaillade RC, Hall JC (1986) Chemosensory elements of courtship in normal and mutant, olfaction-deficient Drosophila melanogaster. Behav Genet 16:375–405

    Article  PubMed  CAS  Google Scholar 

  • Gailey DA, Hall JC (1989) Behavior and cytogenetics of fruitless in Drosophila melanogaster: different courtship defects caused by separate, closely linked lesions. Genetics 121:773–785

    PubMed  CAS  Google Scholar 

  • Gailey DA, Villella A, Tully T (1991) Reassessment of the effect of biological rhythm mutations on learning in Drosophila melanogaster. J Comp Physiol A 169:685–697

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist AS, Partridge L (2000) Why it is difficult to model sperm displacement in Drosophila melanogaster: the relation between sperm transfer and copulation duration. Evolution 54:534–542

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1978) Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behav Genet 8:125–141

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (2002) Courtship lite: a personal history of reproductive behavioral neurogenetics in Drosophila. J Neurogenet 16:135–163

    Article  PubMed  Google Scholar 

  • Hall JC, Siegel RW, Tompkins L, Kyriacou CP (1980) Neurogenetics of courtship in Drosophila. Stadler Genet Symp 12:43-82

    Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  PubMed  CAS  Google Scholar 

  • Kalb JM, DiBenedetto AJ, Wolfner MF (1993) Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci USA 90:8093–8097

    Article  PubMed  CAS  Google Scholar 

  • Kubli E (1996) The Drosophila sex-peptide: a peptide pheromone involved in reproduction. Adv Dev Biochem 4:99–128

    Article  CAS  Google Scholar 

  • Kubli E (2003) Sex peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci 60:1689–1704

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Hall JC (2001) Abnormalities of male-specific FRU protein and serotonin expression in the CNS of fruitless mutants in Drosophila. J Neurosci 21:513–526

    PubMed  CAS  Google Scholar 

  • Lee G, Villella A, Taylor BJ, Hall JC (2001) New reproductive anomalies in fruitless-mutant Drosophila males: extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organs. J Neurobiol 47:121–149

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible neurotechnique cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100:9929–9933

    Article  PubMed  CAS  Google Scholar 

  • Lung O, Wolfner MF (1999) Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol 29:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Lung O, Wolfner MF (2001) Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem Mol Biol 31:543–551

    Article  PubMed  CAS  Google Scholar 

  • Manning A (1967) The control of sexual receptivity in female Drosophila. Anim Behav 15:239–250

    Article  PubMed  CAS  Google Scholar 

  • Mehren JE, Ejima A, Griffith LC (2004) Unconventional sex: fresh approaches to courtship learning. Curr Opin Neurobiol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Monsma SA, Harada HA, Wolfner MF (1990) Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Dev Biol 142:465–475

    Article  PubMed  CAS  Google Scholar 

  • Nakayama S, Kaiser K, Aigaki T (1997) Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol Gen Genet 254:449–455

    Article  PubMed  CAS  Google Scholar 

  • Ottiger M, Soller M, Stocker RF, Kubli E (2000) Biding sites of Drosophila melanogaster sex peptide pheromones. J Neurobiol 44:57–71

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–3613

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Chen S, Busser S, Liu H, Honegger T, Kubli E (2005) Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr Biol 15:207–213

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V (1988) Vectors for P-mediated transformation in Drosophila. Biotechnology 10:437–456

    PubMed  CAS  Google Scholar 

  • Richmond RC, Senior A (1981) Esterase 6 of Drosophila melanogaster: kinetics of transfer to females, decay in females and male recovery. J Insect Physiol 27:849–853

    Article  CAS  Google Scholar 

  • Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470

    PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  PubMed  CAS  Google Scholar 

  • Styger D (1992) Molekulare analyse des sexpeptidgens aus Drosophila melanogaster. Doctoral Dissertation, Universität Zurich, Switzerland

    Google Scholar 

  • Tram U, Wolfner MF (1998) Seminal fluid regulation of female sexual attractiveness in Drosophila melanogaster. Proc Natl Acad Sci USA 95:4051–4054

    Article  PubMed  CAS  Google Scholar 

  • Villella A, Gailey DA, Berwald B, Ohshima S, Barnes PT, Hall JC (1997) Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 147:1107–1130

    PubMed  CAS  Google Scholar 

  • Villella A, Ferri SL, Krystal JD, Hall JC (2005) Functional analysis of fruitless gene expression by transgenic manipulations of Drosophila courtship. Proc Natl Acad Sci USA 102:16550–16557

    Article  PubMed  CAS  Google Scholar 

  • Wolfner MF (1997) Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol 27:179–192

    Article  PubMed  CAS  Google Scholar 

  • Wolfner MF (2002) The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal fluid proteins in Drosophila. Heredity 88:85–93

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Noll M (2000) Drosophila female sexual behavior induced by sterile males showing copulation complementation. Proc Natl Acad Sci USA 97:3272–3275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US NIH grants GM-21473 and NS-33352 to J.C. Hall; as well as by grants 12202002 and 17017032 from the Japanese Ministry of Education, Culture, Sports, Science, and Technology to T. Aigaki. We thank Eric Kubli for donating a Sex Peptide genomic-DNA fragment; Sarah Ferri for contributing to behavioral and immunohistochemical data collection; Edward Dougherty for assisting in image production; and Mariana Wolfner for discussions, supplying a tudor-mutant stock, plus comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Villella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villella, A., Peyre, JB., Aigaki, T. et al. Defective transfer of seminal-fluid materials during matings of semi-fertile fruitless mutants in Drosophila . J Comp Physiol A 192, 1253–1269 (2006). https://doi.org/10.1007/s00359-006-0154-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0154-1

Keywords

Navigation