Skip to main content

Advertisement

Log in

Neurogenesis and neuronal regeneration in the adult fish brain

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Fish are distinctive in their enormous potential to continuously produce new neurons in the adult brain, whereas in mammals adult neurogenesis is restricted to the olfactory bulb and the hippocampus. In fish new neurons are not only generated in structures homologous to those two regions, but also in dozens of other brain areas. In some regions of the fish brain, such as the optic tectum, the new cells remain near the proliferation zones in the course of their further development. In others, as in most subdivisions of the cerebellum, they migrate, often guided by radial glial fibers, to specific target areas. Approximately 50% of the young cells undergo apoptotic cell death, whereas the others survive for the rest of the fish’s life. A large number of the surviving cells differentiate into neurons. Two key factors enabling highly efficient brain repair in fish after injuries involve the elimination of damaged cells by apoptosis (instead of necrosis, the dominant type of cell death in mammals) and the replacement of cells lost to injury by newly generated ones. Proteome analysis has suggested well over 100 proteins, including two dozen identified ones, to be involved in the individual steps of this phenomenon of neuronal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BrdU :

5-Bromo-2′-deoxyuridine

CP/PPn :

Central posterior/prepacemaker nucleus

EOD :

Electric organ discharge

GFAP :

Glial fibrillary acidic protein

TUNEL :

Terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end-labeling

References

  • Alonso JR, Lara J, Vecino E, Coveñas R, Aijón J (1989) Cell proliferation in the olfactory bulb of adult freshwater teleosts. J Anat 163:155–163

    PubMed  CAS  Google Scholar 

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    PubMed  CAS  Google Scholar 

  • Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591

    PubMed  CAS  Google Scholar 

  • Altman J (1969a) Autoradiographic and histological studies of postnatal neurogenesis: III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269–294

    CAS  Google Scholar 

  • Altman J (1969b) Autoradiographic and histological studies of postnatal neurogenesis: IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458

    CAS  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336

    PubMed  CAS  Google Scholar 

  • Barnea A, Nottebohm F (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci USA 91:11217–11221

    PubMed  CAS  Google Scholar 

  • Bass AH (1982) Evolution of the vestibulolateral lobe of the cerebellum in electroreceptive and nonelectroreceptive teleosts. J Morphol 174:335–348

    Google Scholar 

  • Bastian J (1999) Plasticity of feedback inputs in the apteronotid electrosensory system. J Exp Biol 202:1327–1337

    PubMed  CAS  Google Scholar 

  • Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892

    PubMed  CAS  Google Scholar 

  • Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925

    PubMed  CAS  Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50(Suppl 1):17–31

    PubMed  Google Scholar 

  • Bernocchi G, Scherini E, Giacometti S, Mares V (1990) Premitotic DNA synthesis in the brain of the adult frog (Rana esculenta L.): an autoradiographic 3H-thymidine study. Anat Rec 228:461–470

    PubMed  CAS  Google Scholar 

  • Bernstein JJ (1968) Regeneration of a peripheral nerve implant into goldfish telencephalic parenchyma. Nature 217:183–184

    Google Scholar 

  • Botsch D (1960) Dressur-und Transpositionsversuche bei Karauschen (Carassius, Teleostei) nach partieller Exstirpation des Tectum opticum. Z Vergl Physiol 43:173–230

    Google Scholar 

  • Bufalari A, Sidoni A, Ferri M, Lolli G, Alberti P (1996) Effect of octreotide on pancreatic regeneration in rats measured by bromodeoxyuridine uptake. Eur J Surg 162:223–228

    PubMed  CAS  Google Scholar 

  • Bullock TH (1969) Species differences in effect of electroreceptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain Behav Evol 2:85–118

    Google Scholar 

  • Burd GD, Nottebohm F (1985) Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J Comp Neurol 240:143–152

    PubMed  CAS  Google Scholar 

  • Byrd CA, Brunjes PC (2001) Neurogenesis in the olfactory bulb of adult zebrafish. Neuroscience 105:793–801

    PubMed  CAS  Google Scholar 

  • Caddy KWT, Biscoe TJ (1976) The number of Purkinje cells and olive neurones in the normal and lurcher mutant mouse. Brain Res 111:396–398

    PubMed  CAS  Google Scholar 

  • Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    PubMed  CAS  Google Scholar 

  • Chetverukhin VK, Polenov AL (1993) Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus in the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus: I. Ventricular zone cell proliferation. Cell Tiss Res 271:341–350

    CAS  Google Scholar 

  • Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23

    CAS  Google Scholar 

  • Clint SC, Zupanc GKH (2002) Up-regulation of vimentin expression during regeneration in the adult fish brain. NeuroReport 13:317–320

    PubMed  CAS  Google Scholar 

  • Corotto FS, Henegar JA, Maruniak JA (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114

    PubMed  CAS  Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201:541–553

    PubMed  CAS  Google Scholar 

  • Doetsch F, Scharff C (2001) Challenges for brain repair: insights from adult neurogenesis in birds and mammals. Brain Behav Evol 58:306–322

    PubMed  CAS  Google Scholar 

  • Dulka JG, Maler L (1994) Testosterone modulates female chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 174:331–343

    CAS  Google Scholar 

  • Dunlap KD, Thomas P, Zakon HH (1998) Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. J Comp Physiol A 183:77–86

    PubMed  CAS  Google Scholar 

  • Ekström P, Johnsson C-M, Ohlin L-M (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436:92–110

    PubMed  Google Scholar 

  • Engler G, Zupanc GKH (2001) Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 187:747–756

    PubMed  CAS  Google Scholar 

  • Engler G, Fogarty CM, Banks JR, Zupanc GKH (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol A 186:645–660

    PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    PubMed  CAS  Google Scholar 

  • Font E, Desfilis E, Pérez-Cañellas MM, García-Verdugo JM (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 58:276–295

    PubMed  CAS  Google Scholar 

  • Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613

    PubMed  CAS  Google Scholar 

  • García-Verdugo JM, Llahi S, Ferrer I, López-García C (1989) Postnatal neurogenesis in the olfactory bulb of a lizard: a tritiated thymidine autoradiographic study. Neurosci Lett 98:247–252

    PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    PubMed  CAS  Google Scholar 

  • Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, Demidenko E, Cheng KC (2002) Life spans and senescent phenotypes in two strains of zebrafish (Danio rerio). Exp Gerontol 37:1055–1068

    PubMed  Google Scholar 

  • Gheteu A, Zupanc GKH (2001) Radial glia in the cerebellum of adult teleost fish: implications for guidance of migrating new neurons. 31st Annual Meeting of the Society for Neuroscience, San Diego, Society for Neuroscience, Washington, DC, Abstract 692.1

  • Gheteu A, Zupanc GKH (2002) Radial glia in the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: effect of sexual maturity. 32nd Annual Meeting of the Society for Neuroscience, Orlando, Society for Neuroscience. Washington, DC, Abstract 527.5

  • Goldman-Rakic PS (1980) Morphological consequences of prenatal injury to the primate brain. Prog Brain Res 53:3–19

    Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394

    PubMed  CAS  Google Scholar 

  • Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    PubMed  CAS  Google Scholar 

  • Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267

    PubMed  CAS  Google Scholar 

  • Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475

    PubMed  CAS  Google Scholar 

  • Gratzner HG, Leif RC, Ingram DJ, Castro A (1975) The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp Cell Res 95:88–94

    PubMed  CAS  Google Scholar 

  • Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18

    PubMed  CAS  Google Scholar 

  • Hagedorn M, Heiligenberg W (1985) Court and spark: electric signals in the courtship and mating of gymnotoid fish. Anim Behav 33:254–265

    Google Scholar 

  • Heiligenberg W, Finger T, Matsubara J, Carr C (1981) Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (Sternopygidae, Gymnotiformes). Brain Res 211:418–423

    PubMed  CAS  Google Scholar 

  • Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521

    PubMed  CAS  Google Scholar 

  • Hopkins CD (1974) Electric communication: functions in the social behavior of Eigenmannia virescens. Behaviour 50:270–305

    Google Scholar 

  • Johns PR (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J Comp Neurol 176:343–358

    PubMed  CAS  Google Scholar 

  • Johns PR, Easter SSJ (1977) Growth of the adult goldfish eye: II. Increase in retinal cell number. J Comp Neurol 176:331–342

    PubMed  CAS  Google Scholar 

  • Kaplan MS (1981) Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 195:323–338

    PubMed  CAS  Google Scholar 

  • Kaplan MS, Bell DH (1983) Neuronal proliferation in the 9-month-old rodent—radioautographic study of granule cells in the hippocampus. Exp Brain Res 52:1–5

    PubMed  CAS  Google Scholar 

  • Kaplan MS, Bell DH (1984) Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4:1429–1441

    PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131

    PubMed  CAS  Google Scholar 

  • Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Searle J, Harmon BV, Bishop CJ (1987) Apoptosis. In: Potten CS (eds) Perspectives on mammalian cell death. Oxford University Press, Oxford, pp 93–128

    Google Scholar 

  • Kerr JFR, Gobé GC, Winterford CM, Harmon BV (1995) Anatomical methods in cell death. In: Schwartz LM, Osborne BA (eds) Cell death. Academic, San Diego, pp 1–27

    Google Scholar 

  • Kirschbaum F (1979) Reproduction of the weakly electric fish Eigenmannia virescens (Rhamphichtyidae, Teleostei) in captivity: I. Control of gonadal recrudescence and regression by environmental factors. Behav Ecol Sociobiol 4:331–355

    Google Scholar 

  • Kirsche W (1950) Die regenerativen Vorgänge am Rückenmark erwachsener Teleostier nach operativer Kontinuitätstrennung. Z mikrosk.-anat Forsch 56:190–265

    Google Scholar 

  • Kirsche W, Kirsche K (1961) Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius L. Z mikrosk.-anat Forsch 67:140–182

    PubMed  CAS  Google Scholar 

  • Kokudo N, Kothary PC, Eckhauser FE, Nakamura T, Raper SE (1992) Inhibition of DNA synthesis by somatostatin in rat hepatocytes stimulated by hepatocyte growth factor or epidermal growth factor. Am J Surg 163:169–173

    PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773

    PubMed  CAS  Google Scholar 

  • Koumans JTM, Akster HA (1995) Myogenic cells in development and growth of fish. Comp Biochem Physiol 110A:3–20

    CAS  Google Scholar 

  • Kranz D, Richter W (1970) Autoradiographische Untersuchungen zur DNS-Synthese im Cerebellum und in der Medulla oblongata von Teleostiern verschiedenen Lebensalters. Z mikrosk.-anat Forsch 82:264–292

    PubMed  CAS  Google Scholar 

  • Larimer JL, MacDonald JA (1968) Sensory feedback from electroreceptors to electromotor pacemaker centers in gymnotids. Am J Physiol 214:1253–1261

    PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077

    PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    PubMed  CAS  Google Scholar 

  • López-García C, Molowny A, García-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 471:167–174

    Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons from the forebrain subventricular zone. Neuron 11:173–189

    PubMed  CAS  Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38

    PubMed  CAS  Google Scholar 

  • Marcus RC, Delaney CL, Easter SS (1999) Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). Vis Neurosci 16:417–424

    PubMed  CAS  Google Scholar 

  • Mareš V, Lodin Z (1974) An autoradiographic study of DNA synthesis in adolescent and adult mouse forebrain. Brain Res 76:557–561

    PubMed  Google Scholar 

  • Mascardo RN, Sherline P (1982) Somatostatin inhibits rapid centrosomal separation and cell proliferation induced by epidermal growth factor. Endocrinology 111:1394–1396

    PubMed  CAS  Google Scholar 

  • Metzner W (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 202:1365–1375

    PubMed  CAS  Google Scholar 

  • Meyer RL (1978) Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Exp Neurol 59:99–111

    PubMed  CAS  Google Scholar 

  • Meyer RL, Sakurai K, Schauwecker E (1985) Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection. J Comp Neurol 239:27–43

    PubMed  CAS  Google Scholar 

  • Modak SP, Bollum FJ (1972) Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp Cell Res 75:307–313

    PubMed  CAS  Google Scholar 

  • Nelson ME, MacIver MA (1999) Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J Exp Biol 202:1195–1203

    PubMed  CAS  Google Scholar 

  • Nottebohm F (2002) Neuronal replacement in adult brain. Brain Res Bull 57:737–749

    PubMed  Google Scholar 

  • Ott R, Zupanc GKH, Horschke I (1997) Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 221:185–188

    PubMed  CAS  Google Scholar 

  • Paton JA, Nottebohm FN (1984) Neurons generated in the adult brain are recruited into functional circuits. Science 225:1046–1048

    PubMed  CAS  Google Scholar 

  • Paton JA, O’Loughlin BE, Nottebohm F (1985) Cells born in adult canary forebrain are local interneurons. J Neurosci 5:3088–3093

    PubMed  CAS  Google Scholar 

  • Paulin MG (1993) The role of the cerebellum in motor control and perception. Brain Behav Evol 41:39–50

    PubMed  CAS  Google Scholar 

  • Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16

    PubMed  CAS  Google Scholar 

  • Pflugfelder O (1965) Reparative und regenerative Prozesse nach partieller Zerstörung von Fischgehirnen. Zool Jb Physiol 71:301–314

    Google Scholar 

  • Polenov AL, Chetverukhin VK (1993) Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus: II. Types of neuronal cells produced. Cell Tissue Res 271:351–362

    PubMed  CAS  Google Scholar 

  • Polenov AL, Pavlovic M (1978) The hypothalamo–hypophysial system in Acipenseridae. VII. The functional morphology of the peptidergic neurosecretory cells in the preoptic nucleus of the sturgeon, Acipenser güldenstädti Brandt: a quantitative study. Cell Tissue Res 186:559–570

    PubMed  CAS  Google Scholar 

  • Pollak MN, Schally AV (1998) Mechanisms of antineoplastic action of somatostatin analogs. Proc Soc Exp Biol Med 217:143–152

    PubMed  CAS  Google Scholar 

  • Pouwels E (1978a) On the development of the cerebellum of the trout, Salmo gairdneri: I. Patterns of cell migration. Anat Embryol 152:291–308

    CAS  Google Scholar 

  • Pouwels E (1978b) On the development of the cerebellum of the trout, Salmo gairdneri: III. Development of neuronal elements. Anat Embryol 153:37–54

    CAS  Google Scholar 

  • Pérez-Cañellas MM, García-Verdugo JM (1996) Adult neurogenesis in the telencephalon of a lizard: a [3H] thymidine autoradiographic and bromodeoxyuridine immunocytochemical study. Dev Brain Res 93:49–61

    Google Scholar 

  • Pérez-Sánchez F, Molowny A, García-Verdugo JM, López-García C (1989) Postnatal neurogenesis in the nucleus sphericus of the lizard, Podarcis hispanica. Neurosci Lett 106:71–75

    PubMed  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400

    PubMed  CAS  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700

    PubMed  CAS  Google Scholar 

  • Rakic P (2002) Neurogenesis in adult primates. Prog Brain Res 138:3–14

    PubMed  CAS  Google Scholar 

  • Raymond PA, Easter SS (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J Neurosci 3:1077–1091

    PubMed  CAS  Google Scholar 

  • Raymond PA, Easter SS, Burnham JA, Powers MK (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J Neurosci 3:1092–1099

    PubMed  CAS  Google Scholar 

  • Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 163–195

    Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Oto-Laryngol Suppl 220:1–44

    Google Scholar 

  • Sas E, Maler L (1987) The organization of afferent input to the caudal lobe of the cerebellum of the gymnotid fish Apteronotus leptorhynchus. Anat Embryol 177:55–79

    PubMed  CAS  Google Scholar 

  • Sas E, Maler L (1991) Somatostatin-like immunoreactivity in the brain of an electric fish (Apteronotus leptorhynchus) identified with monoclonal antibodies. J Chem Neuroanat 4:155–186

    PubMed  CAS  Google Scholar 

  • Schwartz JP, Taniwaki T, Messing A, Brenner M (1996) Somatostatin as a trophic factor: analysis of transgenic mice overexpressing somatostatin in astrocytes. Ann NY Acad Sci 780:29–35

    PubMed  CAS  Google Scholar 

  • Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  • Siehler S, Zupanc GKH, Seuwen K, Hoyer D (1999) Characterisation of the fish sst3 receptor, a member of the SRIF1 receptor family: atypical pharmacological features. Neuropharmacology 38:449–462

    PubMed  CAS  Google Scholar 

  • Siehler S, Nunn C, Zupanc GKH, Hoyer D (2005) Fish somatostatin sst3 receptor: comparison of radioligand and GTPγS binding, adenylate cyclase and phospholipase C activities reveals different agonist-dependent pharmacological signatures. Autonom Autacoid Pharmacol 25:1–16

    CAS  Google Scholar 

  • Song HJ, Stevens CF, Gage FH (2002) Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 5:438–445

    PubMed  CAS  Google Scholar 

  • Soutschek J, Zupanc GKH (1995) Apoptosis as a regulator of cell proliferation in the central posterior/prepacemaker nucleus of adult gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 202:133–136

    PubMed  CAS  Google Scholar 

  • Soutschek J, Zupanc GKH (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev Brain Res 97:279–286

    CAS  Google Scholar 

  • Srikant CB (1995) Cell cycle dependent induction of apoptosis by somatostatin analog SMS 201–995 in AtT-20 mouse pituitary cells. Biochem Biophys Res Commun 209:400–406

    PubMed  CAS  Google Scholar 

  • Stroh T, Zupanc GKH (1993) Identification and localization of somatostatin-like immunoreactivity in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 160:145–148

    PubMed  CAS  Google Scholar 

  • Stroh T, Zupanc GKH (1995) Somatostatin in the prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: evidence for a nonsynaptic function. Brain Res 674:1–14

    PubMed  CAS  Google Scholar 

  • Stroh T, Zupanc GKH (1996) The postembryonic development of somatostatin immunoreactivity in the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: a double-labelling study. Dev Brain Res 93:76–87

    CAS  Google Scholar 

  • Surh CD, Sprent J (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100–103

    PubMed  CAS  Google Scholar 

  • Swisher DA, Wilson DB (1977) Cerebellar histogenesis in the lurcher(Lc) mutant mouse. J Comp Neurol 173:1038–1041

    Google Scholar 

  • Szende B, Zalatnai A, Schally AV (1989) Programmed cell death (apoptosis) in pancreatic cancers of hamsters after treatment with analogs of both luteinizing hormone-releasing hormone and somatostatin. Proc Natl Acad Sci USA 86:1643–1647

    PubMed  CAS  Google Scholar 

  • Taniwaki T, Schwartz JP (1995) Somatostatin enhances neurofilament expression and neurite outgrowth in cultured rat cerebellar granule cells. Dev Brain Res 88:109–116

    CAS  Google Scholar 

  • Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69:745–749

    PubMed  CAS  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117

    PubMed  CAS  Google Scholar 

  • Thompson JS, Nguyen B-LT, Harty RF (1993) Somatostatin analogue inhibits intestinal regeneration. Arch Surg 128:385–389

    PubMed  CAS  Google Scholar 

  • Turner RW, Maler L (1999) Oscillatory and burst discharge in the apteronotid electrosensory lateral line lobe. J Exp Biol 202:1255–1265

    PubMed  Google Scholar 

  • Vajda FJ (2002) Neuroprotection and neurodegenerative disease. J Clin Neurosci 9:4–8

    PubMed  Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88

    PubMed  CAS  Google Scholar 

  • Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    PubMed  CAS  Google Scholar 

  • Waxman SG, Anderson MJ (1986) Regeneration of central nervous structures: Apteronotus spinal cord as a model system. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 183–208

    Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatly M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    PubMed  CAS  Google Scholar 

  • Wetts R, Herrup K (1983) Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Brain Res 312:41–47

    PubMed  CAS  Google Scholar 

  • Williams RW (2000) Mapping genes that modulate brain development: a quantitative genetic approach. In: Goffinet AF, Rakic P (eds) Mouse brain development. Springer, Berlin Heidelberg New York, pp 21–49

    Google Scholar 

  • Zakon HH (1984) Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age. J Comp Neurol 228:557–570

    PubMed  CAS  Google Scholar 

  • Zakon H, Oestreich J, Tallarovic S, Triefenbach F (2002) EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. J Physiol (Paris) 96:451–458

    CAS  Google Scholar 

  • Zhang Z, Krebs CJ, Guth L (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143:141–152

    PubMed  CAS  Google Scholar 

  • Zieleniewski W, Zieleniewski J (1993) Somatostatin inhibits cell proliferation and corticosterone secretion in the early stage of adrenal regeneration. Cytobios 74:163–166

    PubMed  CAS  Google Scholar 

  • Zikopoulos B, Kentouri M, Dermon CR (2000) Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata). Brain Behav Evol 56:310–322

    PubMed  CAS  Google Scholar 

  • Zupanc GKH (1999a) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446

    CAS  Google Scholar 

  • Zupanc GKH (1999b) Up-regulation of somatostatin after lesions in the cerebellum of the teleost fish Apteronotus leptorhynchus. Neurosci Lett 268:135–138

    CAS  Google Scholar 

  • Zupanc GKH (2001a) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav Evol 58:250–275

    CAS  Google Scholar 

  • Zupanc GKH (2001b) Distribution of radial glia in the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus. In: Elsner N, Kreutzberg GW (eds) In: Göttingen neurobiology report 2001. Proceedings of the 4th meeting of the German Neuroscience Society 2001; vol II. Georg Thieme Verlag, Stuttgart/New York, pp 976

  • Zupanc GKH (2002) From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. J Physiol (Paris) 96:459–472

    CAS  Google Scholar 

  • Zupanc GKH, Heiligenberg W (1992) The structure of the diencephalic prepacemaker nucleus revisited: light microscopic and ultrastructural studies. J Comp Neurol 323:558–569

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Zupanc MM (1992) Birth and migration of neurons in the central posterior/prepacemaker nucleus during adulthood in weakly electric knifefish (Eigenmannia sp.). Proc Natl Acad Sci USA 89:9539–9543

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Maler L (1993) Evoked chirping in the weakly electric fish Apteronotus leptorhynchus: a quantitative biophysical analysis. Can J Zool 71:2301–2310

    Article  Google Scholar 

  • Zupanc GKH, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Maler L (1997) Neuronal control of behavioral plasticity: the prepacemaker nucleus of weakly electric gymnotiform fish. J Comp Physiol A 180:99–111

    Google Scholar 

  • Zupanc GKH, Ott R (1999) Cell proliferation after lesions in the cerebellum of adult teleost fish: time course, origin, and type of new cells produced. Exp Neurol 160:78–87

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Clint SC (2003) Potential role of radial glia in adult neurogenesis of teleost fish. Glia 43:77–86

    PubMed  Google Scholar 

  • Zupanc GKH, Bullock TH (2005) From electrogenesis to electroreception: an overview. In: Bullock TH, Hopkins CD, Popper EN, Fay RR (eds) Electroreception. Springer, Berlin Heidelberg New York, pp 5–46

    Google Scholar 

  • Zupanc GKH, Maler L, Heiligenberg W (1991a) Somatostatin-like immunoreactivity in the region of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative analysis. Brain Res 559:249–260

    CAS  Google Scholar 

  • Zupanc GKH, Okawara Y, Zupanc MM, Fryer JN, Maler L (1991b) In situ hybridization of putative somatostatin mRNA in the brain of electric gymnotiform fish. NeuroReport 2:707–710

    CAS  Google Scholar 

  • Zupanc GKH, Cécyre D, Maler L, Zupanc MM, Quirion R (1994) The distribution of somatostatin binding sites in the brain of gymnotiform fish, Apteronotus leptorhynchus. J Chem Neuroanat 7:49–63

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Horschke I, Ott R, Rascher GB (1996) Postembryonic development of the cerebellum in gymnotiform fish. J Comp Neurol 370:443–464

    PubMed  CAS  Google Scholar 

  • Zupanc GKH, Kompass KS, Horschke I, Ott R, Schwarz H (1998) Apoptosis after injuries in the cerebellum of adult teleost fish. Exp Neurol 221–230

  • Zupanc GKH, Siehler S, Jones EMC, Seuwen K, Furuta H, Hoyer D, Yano H (1999) Molecular cloning and pharmacological characterization of a somatostatin receptor subtype in the gymnotiform fish Apteronotus albifrons. Gen Comp Endocrinol 15:333–345

    Google Scholar 

  • Zupanc GKH, Clint SC, Takimoto N, Hughes ATL, Wellbrock UM, Meissner D (2003) Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: a quantitative analysis. Brain Behav Evol 62:31–42

    PubMed  Google Scholar 

  • Zupanc GKH, Hinsch K, Gage FH (2005) Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 488:290–319

    PubMed  Google Scholar 

  • Zupanc GKH, Sîrbulescu RF, Nichols A, Ilies I (2006a) Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 192:159–173

    CAS  Google Scholar 

  • Zupanc MM, Wellbrock UM, Zupanc GKH (2006b) Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics 6:677–696

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Robert C. Beason, Theodore H. Bullock, Cecilia Ubilla, and Marianne M. Zupanc for their most helpful comments on the manuscript. Part of this review was written while the author was a Visiting Scholar in the laboratory of Ted Bullock at the Department of Neurosciences of the University of California at San Diego. Financial support was provided by funds from the Wellcome Trust and the International University Bremen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. H. Zupanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zupanc, G.K.H. Neurogenesis and neuronal regeneration in the adult fish brain. J Comp Physiol A 192, 649–670 (2006). https://doi.org/10.1007/s00359-006-0104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0104-y

Keywords

Navigation