Skip to main content
Log in

Persistent and reparative neurogenesis in the juvenile masu salmon Oncorhynchus masou telencephalon after mechanical injury

  • Mechanisms of Cell Proliferation and Differentiation
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

A superficially located periventricular proliferative area with PCNA-immunopositive (PCNA+) cells, which corresponds to the pallial periventricular zone (PVZ) of other fish species, including its dorsal, lateral, and medial compartments, is discovered in the telencephalon of the juvenile masu salmon Oncorhynchus masou. The PCNA+ cells are also identified in the parenchyma of the masu salmon intact brain, and their maximum concentration is observed in the medial zone. After a mechanical injury, the zones of induced neurogenesis—neurogenic niches and sites of secondary neurogenesis surrounded by radial glial fibers—appear in the masu salmon telencephalon. The PVZ of the juvenile masu salmon pallium contains clusters of undifferentiated HuCD-immunopositive (HuCD+) neurons. A change in the HuCD+ cell topography is observed in the mechanically injured masu salmon telencephalon, namely, neurogenic niches in the lateral zone and an increase in the cell distribution density and cell migration patterns in the medial zone. A high level of persistent neurogenesis is characteristic of the juvenile masu salmon brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhauser, B., Strahle, U., Gotz, M., and Bally-Cuif, L., Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon, Dev. Biol., 2006, vol. 295, 278–293.

    Article  CAS  PubMed  Google Scholar 

  • Artyukhin, E.N., Osetrovye (Ecologiya, geograficheskoe rasprostranenie i filogeniya) (Acipenseridae: Ecology, Geographic Distribution, and Phylogeny), St. Petersburg: Izd. SPbGU, 2008.

    Google Scholar 

  • Ayari, B., Hachimi, K.H., Yanicostas, C., Landoulsi, A., and Soussi-Yanicostas, N., Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon, J. Neurotrauma, 2010, vol. 27, 959–972.

    Article  PubMed  Google Scholar 

  • Berninger, B., Hack, M.A., and Gotz, M., Neural stem cells: on where they hide, in which disguise, and how we may lure them out, Handb. Exp. Pharmacol., 2006, vol. 174, 319–360.

    Google Scholar 

  • Candal, E., Anadon, R., Bourrat, F., and Rodriguez-Moldes, I., Cell proliferation in the developing and adult hindbrain and midbrain of trout and medaka (teleosts): a segmental approach, Brain Res. Dev. Brain Res., 2005, vol. 160, 157–175.

    Article  CAS  PubMed  Google Scholar 

  • Chojnacki, A.K., Mak, G.K., and Weiss, S., Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?, Nat. Rev. Neurosci., 2009, vol. 10, 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Dirian, L., Galant, S., Coolen, M., Chen, W., Bedu, S., Houart, C., Bally-Cuif, L., and Foucher, I., Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells, Dev. Cell, 2014, vol. 30, 123–136.

    Article  CAS  PubMed  Google Scholar 

  • Edelmann, K., Glashauser, L., Sprungala, S., Hesl, B., Fritschle, M., Ninkovic, J., Godinho, L., and Chapouton, P., Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon, J. Comp. Neurol., 2013, vol. 521, 3099–3115.

    Article  PubMed  Google Scholar 

  • Ganz, J., Kaslin, J., and Hochmann, S., Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon, Glia, 2010, vol. 58, 1345–1363.

    PubMed  Google Scholar 

  • Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., and Brand, M., Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate, Dev. Biol., 2006, vol. 295, 263–277.

    Article  CAS  PubMed  Google Scholar 

  • Hinsch, K. and Zupanc, G.K., Isolation, cultivation, and differentiation of neural stem cells from adult fish brain, J. Neurosci. Methods, 2006, vol. 158, 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Hutton, C., Dery, N., Rosa, E., et al., Mitigating the effects of stress on the hippocampus with diet and exercise, in Abstr. Intern. Confer. Adult Neurogenesis: Evolution, Regulation and Function, Dresden, Germany, 2015, Abstr. 23.

    Google Scholar 

  • Kaneko, N. and Sawamoto, K., Adult neurogenesis and its alteration under pathological conditions, Neurosci. Res., 2009, vol. 63, 155–164.

    Article  PubMed  Google Scholar 

  • Kaslin, J., Ganz, J., and Brand, M., Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2008, vol. 363, 101–122.

    Article  PubMed  Google Scholar 

  • Kempermann, G., Adult Neurogenesis 2—Stem Cells and Neuronal Development in the Adult Brain, New York: Oxford Univ. Press, 2011.

    Google Scholar 

  • Kempermann, G., Adult neurogenesis, in Neuroscience in the 21st Century, Pfaff, D.W., Ed., New York, 2013, pp. 161–178.

  • Kishimoto, N., Alfaro-Cervelloc, C., Shimizu, K., Asakawa, K., Urasaki, A., Nonaka, S., Kawakami, K., Garcia-Verdugo, J.M., and Sawamoto, K., Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish, J. Comp. Neurol., 2011, vol. 519, 3549–3565.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto, N., Shimizu, K., and Sawamoto, K., Neuronal regeneration in a zebrafish model of adult brain injury, Dis. Model. Mech., 2012, vol. 5, 200–209.

    Article  CAS  PubMed  Google Scholar 

  • Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., and Brand, M., Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors, Development, 2011, vol. 138, 4831–4841.

    Article  CAS  PubMed  Google Scholar 

  • Lam, C.S., Marz, M., and Strahle, U., GFAP and nestin reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain, Dev. Dyn., 2009, vol. 238, 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Lema, S.C., Hodges, M.J., Marchetti, M.P., and Nevitt, G.A., Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate, Comp. Biochem. Physiol., 2005, vol. 141A, pp. 327–335.

    Article  CAS  Google Scholar 

  • Lindsey, B.W., Darabie, A., and Tropepe, V., The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain, J. Comp. Neurol., 2007, vol. 520, 2275–2316.

    Article  Google Scholar 

  • Lindsey, B.W., Donato, S., Kaslin, J., and Tropepe, V., Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain, Eur. J. Neurosci., 2014, vol. 40, 3591–3607.

    Article  PubMed  Google Scholar 

  • März, M., Chapouton, P., Diotel, N., Vaillant, C., Hesl, B., Takamiya, M., Lam, C.S., Kah, O., Bally-Cuif, L., and Strahle, U., Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon, Glia, 2010, vol. 58, 870–888.

    PubMed  Google Scholar 

  • Merkulov, G.A., Kurs patologogistologicheskoi tekhniki (A Course in Pathohistological Techniques), Leningrad: Meditsina, 1969.

    Google Scholar 

  • Mueller, T. and Wullimann, M.F., An evolutionary interpretation of teleostean forebrain anatomy, Brain Behav. Evol., 2009, vol. 74, 30–42.

    Article  PubMed  Google Scholar 

  • Mueller, T., Donga, Z., Berberoglua, M.A., and Guo, S., The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei), Brain Res., 2011, vol. 1381, 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, T. and Wullimann, M., Anatomy of neurogenesis in the early zebrafish brain, Dev. Brain Res., 2003, vol. 140, 137–155.

    Article  Google Scholar 

  • Pushchina, E.V., Fleishman, M.Yu., and Timoshin, S.S., Proliferative zones in the brain of the Amur sturgeon fry. Interactions with neuromeres and migration of secondary matrix zones, Russ. J. Dev. Biol., 2007, vol. 38, 286–293.

    Article  Google Scholar 

  • Pushchina, E.V., Obukhov, D.K., and Varaksin, A.A., Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae), Russ. J. Dev. Biol., 2012, vol. 43, 35–48.

    Article  CAS  Google Scholar 

  • Pushchina, E.V., Varaksin, A.A., and Obukhov, D.K., Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye, Russ. J. Dev. Biol., 2016, vol. 47, 11–32.

    Article  Google Scholar 

  • Rothenaigner, I., Krecsmarik, M., Hayes, J.A., Bahn, B., Lepier, A., Fortin, G., Gotz, M., Jagasia, R., and Bally-Cuif, L., Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate, Development, 2011, vol. 138, 1459–1469.

    Article  CAS  PubMed  Google Scholar 

  • Savel’ev, S.V., Sravnitel’naya anatomiya nervnoi sistemy pozvonochnykh (Comparative Anatomy of the Nervous System of Vertebrates), Moscow: GEOTAR-MED, 2001.

    Google Scholar 

  • Stocum, D.L., Regenerative Biology and Medicine, Acad. Press, Burlington, 2006.

    Google Scholar 

  • Tozzini, E.T., Baumgart, M., Battistoni, G., and Cellerino, A., Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging, Aging Cell, 2012, vol. 11, 241–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriz, S., Lemaitre, J.M., Leibovici, M., et al., Comparative analysis of the intracellular localization of c-Myc, c-Fos, and replicative proteins during cell cycle progression, Mol. Cell. Biol., 1992, vol. 12, 3548–3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waseem, N.H. and Lane, D.P., Monoclonal antibody analysis of the proliferating cell nuclear antigen (pcna). structural conservation and the detection of a nucleolar form, J. Cell Sci., 1990, vol. 96, pt. 1, pp. 121–129.

    CAS  PubMed  Google Scholar 

  • Wullimann, M.F. and Muller, T., Teleostean and mammalian forebrains contrasted: evidence from genes to behavior, J. Comp. Neurol., 2004, vol. 475, 143–162.

    Article  CAS  PubMed  Google Scholar 

  • Wullimann, M. and Puelles, L., Postembrionic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains, Anat. Embryol., 1999, vol. 329, 329–348.

    Article  Google Scholar 

  • Zupanc, G.K., Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish, Brain Behav. Evol., 2001, vol. 58, 250–275.

    Article  CAS  PubMed  Google Scholar 

  • Zupanc, G.K. and Sîrbulescu, R.F., Teleost fish as a model system to study successful regeneration of the central nervous system, Curr. Top. Microbiol. Immunol., 2013, vol. 367, 193–233.

    CAS  PubMed  Google Scholar 

  • Zupanc, G.K., Kompass, K.S., Horschke, I., Ott, R., and Schwarz, H., Apoptosis after injuries in the cerebellum of adult teleost fish, Exp. Neurol., 1998, vol. 152, 221–230.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pushchina.

Additional information

Original Russian Text © E.V. Pushchina, E.I. Zharikova, A.A. Varaksin, 2017, published in Ontogenez, 2017, Vol. 48, No. 5, pp. 359–374.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushchina, E.V., Zharikova, E.I. & Varaksin, A.A. Persistent and reparative neurogenesis in the juvenile masu salmon Oncorhynchus masou telencephalon after mechanical injury. Russ J Dev Biol 48, 307–320 (2017). https://doi.org/10.1134/S106236041705006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041705006X

Keywords

Navigation