Skip to main content
Log in

Auditory lateralization in bushcrickets: a new dichotic paradigm

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Pair formation in the bushcricket Gampsocleis gratiosa is achieved through acoustic signalling by the male and phonotactic approaches of the female towards the calling song. On a walking belt in the free sound field, females tracked the position of the speaker broadcasting the male calling song with a remarkable precision, deviating by no more than 10 cm in either direction from the ideal course. Starting with stimulus angles of 6–10° the females significantly turned to the correct side, and with stimulus angles greater than 25° no incorrect turns were made. Using neurophysiological data on the directionality of the ear we calculated that with such stimulus angles the available binaural intensity difference is in the order of 1–2 dB. We developed a dichotic ear stimulation device for freely moving females with a cross-talk barrier of about 50 dB, which allowed to precisely apply small binaural intensity differences. In such a dichotic stimulation paradigm, females on average turned to the tronger stimulated side starting with a 1 dB difference between both ears. The significance of such a reliable lateralization behaviour with small interaural intensity differences for phonotactic behaviour under natural conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IID:

Interaural intensity difference

SPL:

Sound pressure level

References

  • Bailey WJ (1991) Acoustic behaviour of insects. Chapman & Hall, London

    Google Scholar 

  • Bailey WJ, Thomson P (1977) Acoustic orientation in the cricket Teleogryllus oceanicus (Le Guillou). J Exp Biol 67:61–75

    Google Scholar 

  • Bailey WJ, Rentz DCF (1990) The Tettigoniidae: biology, systematics and evolution. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ewing WW (1989) Arthropod bioacoustics: neurobiology and behaviour. Comstock/Cornell, Ithaca

    Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654

    Google Scholar 

  • Gerhardt H, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago

    Google Scholar 

  • Gilbert F, Elsner N (2000) Directional hearing of a grasshopper in the field. J Exp Biol 203:983–993

    PubMed  CAS  Google Scholar 

  • Greenfield MD, Tourtellet MK, Tillberg C, Bell WJ, Prins N (2002) Acoustic orientation via sequential comparison in an ultrasonic moth. Naturwissenschaften 89:376–380

    Article  PubMed  CAS  Google Scholar 

  • Hardt M (1988) Zur Phonotaxis von Laubheuschrecken: eine vergleichende verhaltensphysiologische und neurophysiologisch/neuroanatomische Untersuchung. Dissertation. PhD Thesis, Ruhr-Universität Bochum

  • Hedwig B, Poulet JFA (2005) Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system. J Exp Biol 208:915–927

    Article  PubMed  CAS  Google Scholar 

  • Helversen von D (1997) Acoustic communication and orientation in grasshoppers. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 301–341

    Google Scholar 

  • Helversen von D, Helversen von O (1983) Species recognition and acoustic localization in acridid grasshoppers: a behavioural approach. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 95–107

    Google Scholar 

  • Helversen von D, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestraint grasshopper: a tentative behavioural approach. J Comp Physiol A 162:333–340

    Article  Google Scholar 

  • Helversen von D, Wendler G (2000) Coupling of visual to auditory cues during phonotactic approach in the phaneropterine bushcricket Poecilimon affinis. J Comp Physiol A 186:729–736

    Article  Google Scholar 

  • Houben D, Gourevitch G (1979) Auditory lateralization in monkeys: an examination of two cues serving directional hearing. J Acous Soc Am 66:1057–1063

    Article  CAS  Google Scholar 

  • Huber F (1987) Plasticity in the auditory system of crickets: phonotaxis with one ear and neuronal reorganization within the auditory pathway. J Comp Physiol A 161:583–604

    Article  Google Scholar 

  • Huber F (1990) Cricket neuroethology: neuronal basis of intraspecific acoustic communication. Adv Study Behav 19:256–299

    Google Scholar 

  • Huber F, Moore TE, Loher W (1989) Cricket behaviour and neurobiology. Comstock/Cornell University Press, Ithaca

    Google Scholar 

  • Kalmring, Jatho M (1994) The effect of blocking inputs of the acoustic trachea on the frequency tuning of primary auditory receptors in two species of Tettigoniids. J Exp Zool 270:360–371

    Article  Google Scholar 

  • Kalmring K, Rössler W; Hoffmann E, Jatho M, Unrast C (1995) Causes of the differences in detection of low frequencies in the auditory receptor organs of two species of bushcrickets. J Exp Zool 272:103–115

    Article  Google Scholar 

  • Konishi M (1983) Neuroethology of acoustic prey localization in the barn owl. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 303–317

    Google Scholar 

  • Kramer E (1976) The orientation of walking honeybees in odour fields with small concentration gradients. Physiol Entomol 1:27–37

    Google Scholar 

  • Latimer W, Lewis DB (1986) Song harmonic content as a parameter determining acoustic orientation behaviour in the cricket Telegryllus oceanicus (Le Guillon). J Comp Physiol A 158:583–591

    Article  Google Scholar 

  • Lewis DB (1983) Directional cues for auditory localization. In: Lewis B (ed) Bioacoustics. A comparative approach. Academic Press, London, pp 233–257

    Google Scholar 

  • Mason AC, Oshinsky ML, Hoy R (2001) Hyperacute directional hearing in a microscale auditory system. Nature 410:686–690

    Article  PubMed  CAS  Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali M (ed) Sensory ecology. Plenum Press, New York, pp 345–373

    Google Scholar 

  • Michelsen A (1998). Biophysics of sound localization in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin Heidelberg New York, pp 18–62

    Google Scholar 

  • Michelsen A, Larsen O (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 321–331

    Google Scholar 

  • Michelsen A, Heller KG, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol 175:145–151

    Article  CAS  Google Scholar 

  • Michelsen A, Rohrseitz K (1997) Sound localization in a habitat: an analytical approach to quantifying the degradation of directional cues. Bioacoustics 7:291–313

    Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–241

    Article  Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    Article  PubMed  Google Scholar 

  • Murphey RM, Zaretzky D (1972) Orientation to calling song by female crickets, Scapsipedus marginatus (Gryllidae). J Exp Biol 56:335–352

    PubMed  CAS  Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens. Pflügers Arch 155:193–200

    Article  Google Scholar 

  • Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin Heidelberg New York, pp 139–196

    Google Scholar 

  • Pollack GS (2000) Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767

    Article  PubMed  CAS  Google Scholar 

  • Pollack GS, Plourde N (1982) Directionality of acoustic orientation in flying crickets. J Comp Physiol 146:207–215

    Article  Google Scholar 

  • Pollack GS, Huber F, Weber T (1984) Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J Comp Physiol A 154:13–26

    Article  Google Scholar 

  • Rheinlaender J (1984) Das akustische Orientierungsverhalten von Heuschrecken, Grillen und Fröschen: Eine vergleichende neuro- und verhaltensphysiologische Untersuchung. Habilitationsschrift, Ruhr-Universität-Bochum

  • Rheinlaender J, Blätgen G (1982) The precision of auditory lateralization in the cricket, Gryllus bimaculatus. Physiol Entomol 7:209–218

    Google Scholar 

  • Rheinlaender J, Römer H (1980) Bilateral coding of sound direction in the CNS of the bushcricket Tettigonia viridissima L. (Orthoptera, Tettigoniidae). J Comp Physiol A 140:101–111

    Article  Google Scholar 

  • Rheinlaender J, Römer H (1986) Insect hearing in the field. I. The use of identified nerve cells as “biological microphones”. J Comp Physiol A 158:647–651

    Article  Google Scholar 

  • Rheinlaender J, Römer H (1990) Acoustic cues for sound localization and spacing in Orthopteran insects. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst, pp 248–264

    Google Scholar 

  • Robert D, Göpfert MC (2002) Novel schemes for hearing and orientation in insects. Curr Opin Neurobiol 12:715–720

    Article  PubMed  CAS  Google Scholar 

  • Römer H, Rheinlaender J (1989) Hearing in insects and its adaptation to environmental constraints. In: Lüttgau HC, Necker R (eds) Biological signal processing. VBH Verlag, Weinheim, pp 146–162

    Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 157:631–642

    Google Scholar 

  • Römer H, Spickermann M, Bailey W (1998) Sensory basis for sound intensity discrimination in the bushcricket Requena verticalis (Tettigoniidae, Orthoptera). J Comp Physiol 182:595–607

    Article  Google Scholar 

  • Roeder KD (1967) Nerve cells and insect behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Ronacher B, Helversen von D, Helversen von O (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374

    Article  Google Scholar 

  • Schildberger K (1994) The auditory pathway of crickets: adaptations for intraspecific acoustic communication. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. G. Fischer Verlag Stuttgart, New York, pp 209–226

    Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L (Orthoptera, Gryllidae). I. Mechanisms of acoustic orientation in intact female crickets. J Comp Physiol 148:431–444

    Article  Google Scholar 

  • Schmitz B, Kleindienst HU, Schildberger K, Huber F (1986) Acoustic orientation in adult, female crickets (Gryllus bimaculatus DeGeer) after unilateral foreleg amputation in the larva. J Comp Physiol 162:715–728

    Article  Google Scholar 

  • Schul J, Patterson AC (2002) What determines the tuning of hearing organs and the frequency of calls? A comparative study in the katydid genus Neoconocephalus (Orthoptera, Tettigioniidae). J Exp Biol 206:141–152

    Article  Google Scholar 

  • Shen JX (1993) A peripheral mechanism for auditory directionality in the bushcricket Gampsocleis gratiosa: acoustic tracheal system. J Acoust Soc Am 94:1211–1217

    Article  Google Scholar 

  • Shen J, Guan L (1985) Phonotactic behavior in Gampsocleis gratiosa (Orthoptera, Tettigoniidae). Neurosci Lett Suppl 20:47

    Google Scholar 

  • Shen JX, Tang H (1991) A study of song characteristics and hearing in the bushcricket Gampsocleis gratiosa. Chin J Acoust 10:359–366

    Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis depends on recognition of the calling song pattern. J Comp Physiol A 165:165–177

    Article  Google Scholar 

  • Stumpner A (2002) A species-specific frequency filter through specific inhibition, not specific excitation. J Comp Physiol 188:239–248

    Article  CAS  Google Scholar 

  • Wakeford OS, Robinson DE (1974) Lateralization of tonal stimuli by the cat. J Acoust Soc Am 55:649–652

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol 141:215–232

    Article  Google Scholar 

  • Wegener JG (1974) Iteraural intensity and phase angle discrimination by rhesus monkeys. J Speech Hear Res 17:638–655

    PubMed  CAS  Google Scholar 

  • Wyttenbach RA, Hoy RR (1997) Spatial acuity of ultrasound hearing in flying crickets. J Exp Biol 200:1999–2006

    PubMed  CAS  Google Scholar 

  • Zufall F, Schmitt M, Menzel R (1989) Spectral and polarized light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus). J Comp Physiol A 164:597–608

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Natural Science Foundation of China to JXS (30170250 and 39770209). Experiments comply with the “Principles of animal care”, publication no. 86-23, revised 1985 of the National Institute of Health, and also with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Römer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rheinlaender, J., Shen, JX. & Römer, H. Auditory lateralization in bushcrickets: a new dichotic paradigm. J Comp Physiol A 192, 389–397 (2006). https://doi.org/10.1007/s00359-005-0078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0078-1

Keywords

Navigation