Skip to main content

Advertisement

Log in

Wake-triggered secondary vortices over a cylinder/airfoil configuration

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The wake/boundary–layer interactions over a cylinder/airfoil configuration are investigated using hydrogen bubble visualization and time-resolved particle image velocimetry. The chord Reynolds number of the NACA0012 airfoil is fixed at Rec = 6500. Both the wake-triggered double-secondary vortices topology reported over a multi-element airfoil configuration and the wake-triggered single-secondary vortex topology reported over a cylinder/flat-plate configuration are observed with the current configuration, as the vertical interval (yc/c) between the cylinder and the leading edge of the airfoil increases. The wake disturbances are found to penetrate the boundary layer above the airfoil with different patterns, leading to the change of wake-triggered topology. The wake-triggered secondary vortices effectively suppress the flow separation above the airfoil via a “momentum injection” mechanism, contributing to the enhancement of aerodynamic performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

Available from the authors upon reasonable request.

References

  • Basley J, Pastur L, Lusseyran F, Faure TM, Delprat N (2011) Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp Fluids 50(4):905–918

    Article  Google Scholar 

  • Boutilier MSH, Yarusevych S (2012) Effects of end plates and blockage on low-Reynolds-number flows over airfoils. AIAA J 50(7):1547–1559

    Article  Google Scholar 

  • Burgmann S, Dannemann J, Schröder W (2008) Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp Fluids 44(4):609–622

    Article  Google Scholar 

  • Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50(4):1169–1182

    Article  Google Scholar 

  • Coull JD, Hodson HP (2011) Unsteady boundary-layer transition in low-pressure turbines. J Fluid Mech 681:370–410

    Article  MATH  Google Scholar 

  • Dellacasagrande M, Barsi D, Lengani D, Simoni D, Verdoya J (2020) Response of a flat plate laminar separation bubble to Reynolds number, free-stream turbulence and adverse pressure gradient variation. Exp Fluids 61:128

    Article  Google Scholar 

  • Doligalski T, Walker J (1984) The boundary layer induced by a convected two-dimensional vortex. J Fluid Mech 139:1–28

    Article  MATH  Google Scholar 

  • Durbin P, Wu X (2007) Transition beneath vortical disturbances. Annu Rev Fluid Mech 39(1):107–128

    Article  MATH  Google Scholar 

  • Forrest JS, Owen I, Padfield GD, Hodge SJ (2012) Ship-helicopter operating limits prediction using piloted flight simulation and time-accurate airwakes. J Aircr 49(4):1020–1031

    Article  Google Scholar 

  • Ganapathisubramani B, Longmire EK, Marusic I (2003) Characteristics of vortex packets in turbulent boundary layers. J Fluid Mech 478:35–46

    Article  MATH  Google Scholar 

  • Giret J-C, Sengissen A, Moreau S, Sanjosé M, Jouhaud J-C (2015) Noise source analysis of a rod–airfoil configuration using unstructured large-eddy simulation. AIAA J 53(4):1062–1077

    Article  Google Scholar 

  • Hain R, Kähler C, Radespiel R (2009) Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J Fluid Mech 630:129–153

    Article  MATH  Google Scholar 

  • He G-S, Wang J-J, Pan C (2013) Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J Fluid Mech 718:116–130

    Article  MATH  Google Scholar 

  • He G-S, Pan C, Feng L-H, Gao Q, Wang J-J (2016) Evolution of lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J Fluid Mech 792:274–306

    Article  MATH  Google Scholar 

  • He G-S, Wang J-J, Pan C, Feng L-H, Gao Q, Rinoshika A (2017) Vortex dynamics for flow over a circular cylinder in proximity to a wall. J Fluid Mech 812:698–720

    Article  MATH  Google Scholar 

  • Henning A, Koop L, Ehrenfried K (2010) Simultaneous particle image velocimetry and microphone array measurements on a rod-airfoil configuration. AIAA J 48(10):2263–2273

    Article  Google Scholar 

  • Hodson HP, Howell RJ (2005) Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines. Annu Rev Fluid Mech 37(1):71–98

    Article  MATH  Google Scholar 

  • Hosseinverdi S, Fasel HF (2019) Numerical investigation of laminar–turbulent transition in laminar separation bubbles: The effect of free-stream turbulence. J Fluid Mech 858:714–759

    Article  MATH  Google Scholar 

  • Huang RF, Wu JS (2007) Effects of cylinder wake on seperated boundary layer of a wing. AIAA J 45(1):247–256

    Article  Google Scholar 

  • Jacob MC, Boudet J, Casalino D, Michard M (2005) A rod-airfoil experiment as a benchmark for broadband noise modeling. Theor Comput Fluid Dyn 19(3):171–196

    Article  MATH  Google Scholar 

  • Jiang Y, Mao M-L, Deng X-G, Liu H-Y (2015) Numerical investigation on body-wake flow interaction over rod-airfoil configuration. J Fluid Mech 779:1–35

    Article  MATH  Google Scholar 

  • Jones L, Sandberg R, Sandham N (2010) Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J Fluid Mech 648:257–296

    Article  MATH  Google Scholar 

  • Kurelek JW, Lambert AR, Yarusevych S (2016) Coherent structures in the transition process of a laminar separation bubble. AIAA J 54(8):2295–2309

    Article  Google Scholar 

  • Kyriakides NK, Kastrinakis EG, Nychas SG, Goulas A (1999) Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA J 37(10):1197–1205

    Article  MATH  Google Scholar 

  • Lefebvre JN, Jones AR (2019) Experimental investigation of airfoil performance in the wake of a circular cylinder. AIAA J 57(7):2808–2818

    Article  Google Scholar 

  • Linehan T, Mohseni K (2020) On the maintenance of an attached leading-edge vortex via model bird alula. J Fluid Mech 897:A17

    Article  MATH  Google Scholar 

  • Lorenzoni V, Tuinstra M, Scarano F (2012) On the use of time-resolved particle image velocimetry for the investigation of rod–airfoil aeroacoustics. J Sound Vib 331(23):5012–5027

    Article  Google Scholar 

  • Lua KB, Lim T, Yeo K (2011) Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing. Exp Fluids 51(1):177–195

    Article  Google Scholar 

  • Ma L-Q, Feng L-H, Pan C, Gao Q, Wang J-J (2015) Fourier mode decomposition of PIV data. Sci China Technol Sci 58(11):1935–1948

    Article  Google Scholar 

  • Mandal AC, Dey J (2011) An experimental study of boundary layer transition induced by a cylinder wake. J Fluid Mech 684:60–84

    Article  MATH  Google Scholar 

  • Meyer R (1958) The effect of wakes on the transient pressure and velocity distributions in turbomachines. Trans ASME 80(7):1544–1552

    Google Scholar 

  • Munekata M, Kawahara K, Udo T, Yoshikawa H, Ohba H (2006) An experimental study on aerodynamic sound generated from wake interference of circular cylinder and airfoil vane in tandem. J Therm Sci 15(4):342–348

    Article  Google Scholar 

  • Obabko A, Cassel K (2002) Navier–stokes solutions of unsteady separation induced by a vortex. J Fluid Mech 465:99–130

    Article  MATH  Google Scholar 

  • Pan C, Wang H-P, Wang J-J (2013) Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol 24(5):055305

    Article  Google Scholar 

  • Pan C, Wang J-J, Zhang P-F, Feng L-H (2008) Coherent structures in bypass transition induced by a cylinder wake. J Fluid Mech 603:367–389

    Article  MATH  Google Scholar 

  • Pan C, Xue D, Xu Y, Wang J-J, Wei R-J (2015) Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci China Phys Mech 58(10):1–16

    Article  Google Scholar 

  • Peridier VJ, Smith F, Walker J (1991) Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re→∞. J Fluid Mech 232:99–131

    Article  MATH  Google Scholar 

  • Rao VN, Tucker P, Jefferson-Loveday R, Coull J (2013) Large eddy simulations in low-pressure turbines: Effect of wakes at elevated free-stream turbulence. Int J Heat Fluid Flow 43:85–95

    Article  Google Scholar 

  • Sarkar S (2009) Influence of wake structure on unsteady flow in a low pressure turbine blade passage. J Turbomach 131(4):041016

    Article  Google Scholar 

  • Scillitoe AD, Tucker PG, Adami P (2019) Large eddy simulation of boundary layer transition mechanisms in a gas-turbine compressor cascade. J Turbomach 141(6):061008

    Article  Google Scholar 

  • Simoni D, Ubaldi M, Zunino P, Lengani D, Bertini F (2012) An experimental investigation of the separated-flow transition under high-lift turbine blade pressure gradients. Flow Turbul Combust 88(1):45–62.

    Article  MATH  Google Scholar 

  • Squire L (1989) Interactions between wakes and boundary-layers. Prog Aerosp Sci 26(3):261–288

    Article  Google Scholar 

  • Stieger R, Hodson H (2003) The transition mechanism of highly-loaded LP turbine blades. In: The 2003 international joint power generation conference, pp 779–788

  • Thomas FO, Nelson R, Liu X (2000) Experimental investigation of the confluent boundary layer of a high-lift system. AIAA J 38(6):978–988

    Article  Google Scholar 

  • Walker J. (1978) The boundary layer due to rectilinear vortex. Proc Roy Soc Lond Math Phys Sci Data 359(1697):167–188.

  • Wang J-S, Wang J-J (2021a) Wake-induced transition in the low-Reynolds-number flow over a multi-element airfoil. J Fluid Mech 915:A28

    Article  Google Scholar 

  • Wang J-S, Wang J-J (2021b) Vortex dynamics for flow around the slat cove at low Reynolds numbers. J Fluid Mech 919:A27

    Article  MATH  Google Scholar 

  • Wang JS, Wang JJ, Kim KC (2019) Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil. Exp Fluids 60:16

    Article  Google Scholar 

  • Welch P (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  • Wissink JG, Rodi W, Hodson HP (2006) The influence of disturbances carried by periodically incoming wakes on the separating flow around a turbine blade. Int J Heat Fluid Flow 27(4):721–729

    Article  Google Scholar 

  • Wissink JG, Zaki TA, Rodi W, Durbin PA (2014) The effect of wake turbulence intensity on transition in a compressor cascade. Flow Turbul Combust 93(4):555–576.

    Article  Google Scholar 

  • Wu X, Durbin PA (2001) Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. J Fluid Mech 446:199–228

    Article  MATH  Google Scholar 

  • Wu X, Jacobs RG, Hunt JC, Durbin PA (1999) Simulation of boundary layer transition induced by periodically passing wakes. J Fluid Mech 398:109–153

    Article  MATH  Google Scholar 

  • Zaki T, Wissink J, Durbin P, Rodi W (2009) Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade. Flow Turbul Combust 83(3):307–322.

    Article  MATH  Google Scholar 

  • Zaki TA, Wissink JG, Rodi W, Durbin PA (2010) Direct numerical simulations of transition in a compressor cascade: The influence of free-stream turbulence. J Fluid Mech 665:57–98

    Article  MATH  Google Scholar 

  • Zhang Z, Wang Z, Gursul I (2020) Lift enhancement of a stationary wing in a wake. AIAA J 58(11):4613–4619

    Article  Google Scholar 

  • Zhao Y, Sandberg RD (2020) Bypass transition in boundary layers subject to strong pressure gradient and curvature effects. J Fluid Mech 888:A4

    Article  MATH  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall T (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors really appreciate the financial support of the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. The authors also thank the anonymous reviewers whose comments and suggestions greatly improved the quality and clarity of the manuscript.

Funding

National Natural Science Foundation of China (11721202) and the China Postdoctoral Science Foundation (2021M700010 and 2022T150036).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and reviewed the manuscript. J-S W contributed to the data analysis, methodology, original draft writing and editing; J W conducted the experiments and advised on the data analysis; J-J W contributed to the supervision, methodology and editing.

Corresponding author

Correspondence to Jin-Jun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

No applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JS., Wu, J. & Wang, JJ. Wake-triggered secondary vortices over a cylinder/airfoil configuration. Exp Fluids 64, 6 (2023). https://doi.org/10.1007/s00348-022-03546-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-022-03546-y

Navigation