Skip to main content
Log in

A rod-airfoil experiment as a benchmark for broadband noise modeling

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A low Mach number rod-airfoil experiment is shown to be a good benchmark for numerical and theoretical broadband noise modeling. The benchmarking approach is applied to a sound computation from a 2D unsteady-Reynolds-averaged Navier–Stokes (U-RANS) flow field, where 3D effects are partially compensated for by a spanwise statistical model and by a 3D large eddy simulation. The experiment was conducted in the large anechoic wind tunnel of the Ecole Centrale de Lyon. Measurements taken included particle image velocity (PIV) around the airfoil, single hot wire, wall pressure coherence, and far field pressure. These measurements highlight the strong 3D effects responsible for spectral broadening around the rod vortex shedding frequency in the subcritical regime, and the dominance of the noise generated around the airfoil leading edge. The benchmarking approach is illustrated by two examples:

  • the validation of a stochastical noise generation model applied to a 2D U-RANS computation;

  • the assessment of a 3D LES computation using a new subgrid scale (SGS) model coupled to an advanced-time Ffowcs–Williams and Hawkings sound computation.

In both cases, the ability of computational fluid dynamics to model the source mechanisms and of the CAA approach to predict the far field are assessed separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E., Szewcyk, A.A.: Effects of a splitter plate on the near wake of a circulaire cylinder in 2 and 3-dimensional flow configurations. Exp. Fluids 23(2), 161–174 (1997)

    Google Scholar 

  2. Amiet, R.K.: High freq. thin airfoil theory for subsonic flow. AIAA J. 14(8), 1076–1082 (1976)

    Google Scholar 

  3. Amiet, R.K.: Low freq. approximations in unsteady small perturbation of subsonic flows. J. Fluid Mech. 75(3), 545–552 (1976)

    Google Scholar 

  4. Béra, J.C., Michard, M., Sunyach, M., Comte-Bellot, G.: Changing lift and drag by jet oscillation: experiments on a circular cylinder with turbulent separation. Eur. J. Mech. (Part B/Fluids) 19, 575–595 (2000)

    Google Scholar 

  5. Boudet, J., Casalino, D., Jacob, M.C., Ferrand, P.: Unsteady RANS computations of the flow past an airfoil in the wake of a rod. ASME Paper FEDSM 2002-31343, ASME forum on unsteady flows, Montreal, Canada, July, 14–18 (2002)

  6. Boudet, J., Casalino, D., Jacob, M.C., Ferrand, P.: Prediction of sound radiated by a rod using large eddy simulation. AIAA Paper 2003–3217, 9th AIAA/CEAS Aeroacoustics Conf. Hilton Head Island, USA May, 12–14 (2003)

  7. Boudet, J., Grosjean, N., Jacob, M.C.: Wake-airfoil interaction as a source of broadband noise. Euromech449 Colloq. Computational Aeroacoustics. Chamonix, France, Dec., 9–12 (2003)

  8. Boudet, J., Casalino, D., Jacob, M.C., Ferrand, P.: Prediction of broadband noise: airfoil in the wake of a rod. AIAA Paper 2004–0852, 42nd AIAA Aerospace Conf. Meeting and Exhibit. Reno, USA, Jan., 5–8 (2004)

  9. Brentner, K.S., Farassat, F.: Analytical comparison of acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA J. 36(8), 1379–1386 (1998)

    Google Scholar 

  10. Cambanis, V.P., Stapountzis, H.: An experimental study and FLUENT simulation of the horizontal axis wind turbine (HAWT) blade-tower dynamic interaction. 2nd Southeastern Europe Fluent Users Group Meeting. November 1–2, Bucharest, Romania (2001)

  11. Casalino, D., Jacob, M.C., Roger, M.: Prediction of rod-airfoil interaction noise using the Ffowcs–Williams and Hawkings analogy. AIAA J. 41(2), 182–191 (2003)

    Google Scholar 

  12. Casalino, D.: An advanced time approach for acoustic analogy predictions. J. Sound Vib. 261(4), 583–612 (2003)

    Google Scholar 

  13. Casalino, D., Jacob, M.C.: Prediction of aerodynamic sound from circular rods via spanwise statistical modeling. J. Sound Vib. 262(4), 815–844 (2003)

    Google Scholar 

  14. Cicala, P.: Le azioni aerodinamiche sul profilo oscillante. L’aerotecnica 16, 652–665 (1936)

    Google Scholar 

  15. Comte-Bellot, G., Corrsin, S.: The use of contraction to improve isotropy of grid-generated turbulence. J. Fluid Mech. 25(4), 657–682 (1966)

    Google Scholar 

  16. Cox, J.S., Rumsey, C.L., Brentner, K.S., Younis, B.A.: Computation of sound generated by viscous flow over a circular cylinder. NASA Tech. Memo. 110339 (1997)

  17. Crighton, D.G., Dowling, A.P., Ffowcs-Williams, J.E., Heckl, J.E., Leppington, F.G.: Modern methods in analytical acoustics. Springer, London (1992)

  18. Filotas, L.T.: Oblique compressible sears function. AIAA J. 12(11), 1601–1603 (1974)

    Google Scholar 

  19. Glauert, H.: The force and moment on an oscillating airfoil. British A.R.C., R. & M., No. 1242 (1929)

  20. Goldstein, M.E., Atassi, H.M.: A complete second order theory for the unsteady flow about an airfoil due to a periodic gust. J. Fluid Mech. 74(4), 741–765 (1976)

    Google Scholar 

  21. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD, and vortex identification algorithms for study of unsteady turbulent swirling flows. Meas. Sci. Tech. 11, 1422–1429 (2001)

    Google Scholar 

  22. Graham, J.W.S.: Similarity rules for thin airfoils in non-stationary subsonic flows. J. Fluid Mech. 43(4), 753–766 (1970)

    Google Scholar 

  23. Jacob, M.C., Boudet, J., Casalino, D., Caro, J., Grosjean, N., Michard, M.: A feasibility study on the use of CFD to model broadband noise generation. Final report, deliverable D1.15, E.U. Project TurboNoise CFD, contract No. G4RD-CT-1999-00144, (2003)

  24. Kato, C., Ikegawa, M.: Large eddy simulation of the unsteady wake of a circular cylinder using the finite element method. Adv. in numerical simulation of turbulent flows. 117, 49–56 (1991)

  25. Küssner, H.G.: Zusammenfassender Bericht über den instationären Auftrieb von Flügeln. Luftfahrtforschung 13, 410–424 (1936)

    Google Scholar 

  26. Magagnato, F., Sorgüven, E., Gabi M.: Far field noise prediction by large-eddy simulation and Ffowcs–Williams and Hawkings analogy. AIAA paper 2003-3206, 9th AIAA/CEAS Aeroacoustics Conf., Hilton Head Island, May 12–14 (2003)

  27. Martinez, R., Widnall S.: Unified aerodynamic-acoustic theory for a thin rectangular wing encountering a gust. J. Sound Vib. 41(4), 407–420 (1980)

    Google Scholar 

  28. Michard, M., Graftieaux, L., Lollini, L., Grosjean, N.: Identification of vortical structures by a non local criterion: application to PIV measurements and DNS-LES results of turbulent rotating flows. 11th Symp. on turbulent shear flows, Grenoble, France (1997)

  29. Michard, M., Jacob, M.C., Grosjean, N.: An experimental charaterization of the flow past an airfoil in the wake of a circular rod. ASME FEDSM Paper 2002-31344, ASME forum on unsteady flows, Montreal, Canada, July, 14–18 (2002)

  30. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys. Fluids, Brief communications 11(4), 943–945 (1999)

    Google Scholar 

  31. Pérènnes, S., Roger, M.: Aerodynamic noise of a two-dimensional wing with high-lift devices. AIAA Paper 98-2338, Proc. 4th AIAA/CEAS Aeroacoustics Conf., 772–782, Toulouse, France 2–4 June, (1998)

  32. Possio, C.: L’azione aerodynamica sul profilo oscillante in un fluido compressibile a velocitá iposonora. L’Aerotecnica 18(4), 441–458 (1938)

    Google Scholar 

  33. Sagaut, P.: Introduction à la simulation des grandes échelles pour les écoulements de fluide incompressible (revised and augmented version). Mathématiques et Applications, Springer (2002)

  34. Sears, W.R.: Some aspects of non-stationary airfoil theory and its practical application, J. Aeronaut. Sci. 8(3), 104–108 (1941)

    Google Scholar 

  35. Smagorinsky, J.: Numerical study of small-scale intermittency in three-dimensional turbulence. Month. Weather Rev. 91, 99–164 (1963)

    Google Scholar 

  36. Sorgüven, E., Magagnato, F., Gabi M.: Acoustic prediction of a cylinder and airfoil configuration at high Reynolds numbers with LES and FWH. ERCOFTAC Bullentin 58, 47–50 (2003)

    Google Scholar 

  37. Stapountzis, H., Yakinthos, K., Goulas, A., Kallergis, L.S., Kambanis, V.: Cylinder wake airfoil interaction with application to downwind HAWT. Proc. Eur. Wind Energy Conf., E.L. Petersen (Ed.), James & James, 172–175 (1999)

  38. Strouhal, V.: Über eine besondere Art der Tonerregung. Ann. Phys. Chem. 3(5), 216–251 (1878)

    Google Scholar 

  39. Unal, M.F., Rockwell, D.: On the vortex formation of a cylinder. Part 2: control by a splitter plate interference. J. Fluid Mech. 90, 513–529 (1987)

    Google Scholar 

  40. van Driest, E.R.: On the turbulent flow near a wall. J. Aeronaut. Sci. 23, 1007–1011 (1956)

    Google Scholar 

  41. Wagner, H.: Über die Enstehung des dynamischen Auftriebes von Tragflügeln. ZAMM 5(1), 17–35 (1925)

    Google Scholar 

  42. Widnall, S.: Helicopter noise due to blade-vortex interaction. J. Acous. Soc. Am. 51(1), 345–365 (1971)

    Google Scholar 

  43. Wilcox, D.C.: Comparison of two equation turbulence models for boundary layers with pressure gradients, AIAA J. 31, 1414–1421 (1993)

    Google Scholar 

  44. Zdravkovich, M.M.: Flow around circular cylinders, vol. 1: fundamentals. Oxford Sci. Pub., Oxford uni. Press. (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Jacob.

Additional information

Communicated by

P. Sagaut

PACS

43.28Ra; 47.27Sd; 47.27Eq; 47.85Gj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, M., Boudet, J., Casalino, D. et al. A rod-airfoil experiment as a benchmark for broadband noise modeling. Theor. Comput. Fluid Dyn. 19, 171–196 (2005). https://doi.org/10.1007/s00162-004-0108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-004-0108-6

Keywords

Navigation