Skip to main content
Log in

Fast and accurate PIV computation using highly parallel iterative correlation maximization

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Our contribution deals with fast computation of dense two-component (2C) PIV vector fields using Graphics Processing Units (GPUs). We show that iterative gradient-based cross-correlation optimization is an accurate and efficient alternative to multi-pass processing with FFT-based cross-correlation. Density is meant here from the sampling point of view (we obtain one vector per pixel), since the presented algorithm, folki, naturally performs fast correlation optimization over interrogation windows with maximal overlap. The processing of 5 image pairs (1,376 × 1,040 each) is achieved in less than a second on a NVIDIA Tesla C1060 GPU. Various tests on synthetic and experimental images, including a dataset of the 2nd PIV challenge, show that the accuracy of folki is found comparable to that of state-of-the-art FFT-based commercial softwares, while being 50 times faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255

    Article  Google Scholar 

  • Bergen JR, Anandan P, Hanna KJ, Hingorani R (1992) Hierarchical model-based motion estimation. In: ECCV 92, Proceedings of the second European conference on computer vision, pp 237–252

  • Bouguet JY (2000) Pyramidal implementation of the Lucas-Kanade feature tracker: description of the algorithm. Tech. rep., Open CV Documentation

  • Burt P, Adelson E (1983) The Laplacian image pyramid as a compact image code. IEEE Trans Commun 31:532–540

    Article  Google Scholar 

  • Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Le Sant Y (2009) How to calculate dense PIV vector fields at video rates. In: Proceedings of 8th international symposium on particle image velocimetry—PIV09, Melbourne

  • Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97

    Article  Google Scholar 

  • Gardarin B, Jacquin L, Geffroy P (2008) Flow separation control with vortex generators. In: AIAA 4th flow control conference, Seattle, WA, 23–26 June

  • Iriarte Munoz J, Dellavale D, Sonnaillon M, Bonetto F (2009) Real-time particle image velocimetry based on FPGA technology. In: Programmable logic, 2009. SPL. 5th Southern conference on, pp 147–152

  • Keller Y, Averbuch A (2004) Fast motion estimation using bi-directional gradient methods. IEEE Trans Image Process 13(8):1042–1054

    Article  MathSciNet  Google Scholar 

  • Le Besnerais G, Champagnat F (2005) Dense optical flow by iterative local window registration. In: ICIP’05, Proceedings of the IEEE international conference on image processing, vol I, pp 137–140

  • Leclaire B, Le Sant Y, Davoust S, Le Besnerais G, Champagnat F (2010) FOLKI-SPIV: a new, ultra-fast approach for stereo PIV. submitted to Experiments in Fluids

  • Lecordier B, Trinite M (2003) Advanced PIV algorithms with image distortion validation and comparison using synthetic images of turbulent flow. In: Stanislas M, Westerweel J, Kompenhans J (eds) Particle image velocimetry: recent improvements. Proceedings of the EUROPIV 2 workshop, Springer, pp 115–132

  • Lecordier B, Trinité M (2006) Accuracy assessment of image interpolation schemes for PIV from real images of particle. In: Proc. 13th int. symp. on appl. of laser techn. to fluid mechanics, Lisbon, Portugal

  • Lecordier B, Westerweel J (2003) The EUROPIV Synthetic Image Generator (SIG). In: Stanislas M, Westerweel J, Kompenhans J (eds) Particle image velocimetry: recent improvements. EUROPIV 2 workshop, Springer

  • Miozzi M (2004) Particle image velocimetry using feature tracking and Delaunay Tessellation. In: Proceedings of the XII international symposium on application of laser technique to fluid mechanics, Lisbon

  • Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46(3):1–10

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley C, Kompenhans J (2007) Particle image velocimetry. A practical guide, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38:21–32

    Article  Google Scholar 

  • Ruijters D, ter Haar Romeny BM, Suetens P (2008) Efficient GPU-based texture interpolation using uniform B-splines. J Graphics GPU Game Tools 13(4):61–69

    Google Scholar 

  • Scarano F, Riethmuller M (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:51–60

    Article  Google Scholar 

  • Schiwietz T, Westermann R (2004) GPU-PIV. In: Girod B, Magnor MA, Seidel HP (eds) Proceedings of the vision, modeling, and visualization conference, Aka GmbH, Stanford, CA, pp 151–158

  • Stanislas M, Okamoto K, Kähler CJ, Westerweel J (2005) Main results of the second international PIV challenge. Exp Fluids 39:170–191

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Käler CJ, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45:27–71

    Article  Google Scholar 

  • Venugopal V, Patterson C, Shinpaugh K (2009) Accelerating particle image velocimetry using hybrid architectures. In: Proceedings of symposium on application accelerators in high performance computing (SAAHPC’09), Urbana, Illinois

  • Westerweel J (1993) Digital particle image velocimetry—theory and application. PhD thesis, University Press, Delft

  • Westerweel J (2000a) Effect of sensor geometry on the performance of PIV interrogation. Laser techniques applied to fluid mechanics. Springer, Berlin, pp 37–55

  • Westerweel J (2000b) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:3–12

    Article  Google Scholar 

  • Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp Fluids 23(1):20–28

    Article  Google Scholar 

  • Yamamoto Y, Uemura T (2009) Robust particle image velocimetry using gradient method with upstream difference and downstream difference. Exp Fluids 46(4):659–670

    Article  Google Scholar 

  • Yu H, Leeser M, Tadmor G, Siegel S (2006) Real-time particle image velocimetry for feedback loops using FPGA implementation. J Aerosp Comput Inf Commun 3(2):52–62

    Article  Google Scholar 

  • Zhao W, Sawhney H (2002) Is super-resolution with optical flow possible? In: ECCV02, Proceedings of the European conference on computer vision, pp 153–162

Download references

Acknowledgments

Benoît Gardarin, Laurent Jacquin and Gilles Losfeld are gratefully acknowledged for providing their experimental TR-PIV dataset. Moreover the authors salute the helpful comments of the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Champagnat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champagnat, F., Plyer, A., Le Besnerais, G. et al. Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50, 1169–1182 (2011). https://doi.org/10.1007/s00348-011-1054-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1054-x

Keywords

Navigation