Skip to main content
Log in

A method to determine wall shear stress from mean profiles in turbulent boundary layers

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The direct measurement of wall shear stress in turbulent boundary layers (TBL) is challenging, therefore, requiring it to be indirectly determined from mean profile measurements. Most popular methods assume the mean streamwise velocity to satisfy either a logarithmic law in the inner layer or a composite velocity profile with many tuned constants for the entire TBL, both of which require reliable data from the inner layer. The presence of roughness and pressure gradient brings additional complications where most existing methods either fail or require significant modification. A novel method is proposed to determine the wall shear stress in zero pressure gradient TBL from measured mean profiles, without requiring near-wall data. The method is based on the stress model of Kumar and Mahesh (Phys Rev Fluids 6:024603, 2021), who developed accurate models for mean stress and wall-normal velocity in zero pressure gradient TBL. The proposed method requires a single point measurement of mean streamwise velocity and mean shear stress in the outer layer, preferably between 20 and \(50 \%\) of the TBL, and an estimate of boundary layer thickness and shape factor. The method can handle wall roughness without modification and is shown to predict friction velocities to within \(3 \%\) over a range of Reynolds number for both smooth and rough wall zero pressure gradient TBL. In order to include the pressure gradients effects, the work of Kumar and Mahesh (Phys Rev Fluids 6:024603, 2021) is revisited to derive a novel model for both mean stress and wall-normal velocity in pressure gradient TBL, which is then used to formulate a method to obtain the wall shear stress from the profile data. Overall, the proposed method is shown to be robust and accurate for a variety of pressure gradient TBL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Baidya R, Philip J, Hutchins N, Monty JP, Marusic I (2017) Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Phys Fluids 29(2):020712

    Article  Google Scholar 

  • Bobke A, Vinuesa R, Örlü R, Schlatter P (2017) History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J Fluid Mech 820:667–692

    Article  MathSciNet  Google Scholar 

  • Chauhan KA, Monkewitz PA, Nagib HM (2009) Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn Res 41(2):021404

    Article  Google Scholar 

  • Clauser FH (1954) Turbulent boundary layers in adverse pressure gradients. J Aeronaut Sci 21(2):91–108

    Article  Google Scholar 

  • Coles D (1956) The law of the wake in the turbulent boundary layer. J Fluid Mech 1(2):191–226

    Article  MathSciNet  Google Scholar 

  • De Graaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346

    Article  Google Scholar 

  • Fernholz HH, Finley PJ (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerosp Sci 32(4):245–311

    Article  Google Scholar 

  • Flack KA, Schultz MP, Volino RJ (2020) The effect of a systematic change in surface roughness skewness on turbulence and drag. Int J Heat Fluid Flow 85:108669

    Article  Google Scholar 

  • Fukagata K, Iwamoto K, Kasagi N (2002) Contribution of reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids 14(11):L73–L76

    Article  Google Scholar 

  • George WK, Castillo L (1997) Zero-pressure-gradient turbulent boundary layer. Appl Mech Rev 50(11):689–729

    Article  Google Scholar 

  • Knopp T, Reuther N, Novara M, Schanz D, Schülein E, Schröder A, Kähler CJ (2021) Experimental analysis of the log law at adverse pressure gradient. J Fluid Mech 918:A17

    Article  Google Scholar 

  • Kumar P, Mahesh K (2018) Analysis of axisymmetric boundary layers. J Fluid Mech 849:927–941

    Article  MathSciNet  Google Scholar 

  • Kumar P, Mahesh K (2021) Simple model for mean stress in turbulent boundary layers. Phys Rev Fluids 6(2):024603

    Article  MathSciNet  Google Scholar 

  • Marusic I, Monty JP, Hultmark M, Smits AJ (2013) On the logarithmic region in wall turbulence. J Fluid Mech 716:R3

    Article  MathSciNet  Google Scholar 

  • Mehdi F, White CM (2011) Integral form of the skin friction coefficient suitable for experimental data. Exp Fluids 50(1):43–51

    Article  Google Scholar 

  • Mehdi F, Johansson TG, White CM, Naughton JW (2014) On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp Fluids 55(1):1–9

    Article  Google Scholar 

  • Monkewitz PA (2017) Revisiting the quest for a universal log-law and the role of pressure gradient in “canonical” wall-bounded turbulent flows. Phys Rev Fluids 2(9):094602

    Article  Google Scholar 

  • Monkewitz PA, Chauhan KA, Nagib HM (2007) Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys Fluids 19(11):115101

    Article  Google Scholar 

  • Morrill-Winter C, Klewicki J, Baidya R, Marusic I (2015) Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. Exp Fluids 56(12):1–14

    Article  Google Scholar 

  • Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans Royal Soc A Math Phys Eng Sci 365(1852):755–770

    Article  Google Scholar 

  • Nickels TB (2004) Inner scaling for wall-bounded flows subject to large pressure gradients. J Fluid Mech 521:217–239

    Article  MathSciNet  Google Scholar 

  • Österlund JM (1999) Experimental studies of zero pressure-gradient turbulent boundary layer flow. PhD thesis, Mekanik

  • Perry AE, Li JD (1990) Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J Fluid Mech 218:405–438

    Article  Google Scholar 

  • Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Prandtl L (1904) Über flussigkeitsbewegung bei sehr kleiner reibung. Verhandl III, Internat Math-Kong, Heidelberg, Teubner, Leipzig pp 484–491

  • Prandtl L (1910) Eine beziehung zwischen warmeaustausch and stromungswiderstand der flussigkeiten. Phys Z 11:1072–1078

    MATH  Google Scholar 

  • Rannie WD (1956) Heat transfer in turbulent shear flow. J Aeronaut Sci 23(5):485–489

    Article  MathSciNet  Google Scholar 

  • Reichardt H (1951) Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen. ZAMM J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 31(7):208–219

    Article  Google Scholar 

  • Rodríguez-López E, Bruce PJK, Buxton ORH (2015) A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile. Exp Fluids 56(4):1–16

    Article  Google Scholar 

  • Rotta J (1953) On the theory of the turbulent boundary layer. NACA Technical Memorandum, No, p 1344

  • Samie M, Marusic I, Hutchins N, Fu MK, Fan Y, Hultmark M, Smits AJ (2018) Fully resolved measurements of turbulent boundary layer flows up to 20000. J Fluid Mech 851:391–415

    Article  MathSciNet  Google Scholar 

  • Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126

    Article  Google Scholar 

  • Schultz MP, Flack KA (2003) Turbulent boundary layers over surfaces smoothed by sanding. J Fluids Eng 125(5):863–870

    Article  Google Scholar 

  • Sillero JA, Jiménez J (2013) Moser RD (2013) One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \({\delta }^+ \approx 2000\). Phys Fluids (1994-present) 25(10):105102

    Article  Google Scholar 

  • Smits AJ, McKeon BJ, Marusic I (2011) High-Reynolds number wall turbulence. Ann Rev Fluid Mech 43:353–375

    Article  Google Scholar 

  • Spalding DB (1961) A single formula for the ”law of the wall”. J Appl Mech:455–458

  • Taylor GI (1916) Conditions at the surface of a hot body exposed to the wind. Rep Memo of the British Advisory Committee for Aeronautics 272:423–429

  • von Kármán T (1939) The analogy between fluid friction and heat transfer. Trans Am Soc Mech Eng 61:705–710

    MATH  Google Scholar 

  • Vallikivi M, Hultmark M, Smits AJ (2015) Turbulent boundary layer statistics at very high reynolds number. J Fluid Mech 779:371

    Article  MathSciNet  Google Scholar 

  • Vinuesa R, Bobke A, Örlü R, Schlatter P (2016) On determining characteristic length scales in pressure-gradient turbulent boundary layers. Phys Fluids 28(5):055101

    Article  Google Scholar 

  • Volino RJ, Schultz MP (2018) Determination of wall shear stress from mean velocity and reynolds shear stress profiles. Phys Rev Fluids 3(3):034606

    Article  Google Scholar 

  • Wei T, Klewicki J (2016) Scaling properties of the mean wall-normal velocity in zero-pressure-gradient boundary layers. Phys Rev Fluids 1(8):082401

    Article  Google Scholar 

  • Wei T, Schmidt R, McMurtry P (2005) Comment on the Clauser chart method for determining the friction velocity. Exp Fluids 38(5):695–699

    Article  Google Scholar 

  • Wei T, Maciel Y, Klewicki J (2017) Integral analysis of boundary layer flows with pressure gradient. Phys Rev Fluids 2(9):092601

    Article  Google Scholar 

  • Werner H, Wengle H (1993) Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: Turbulent shear flows 8, Springer, pp 155–168

  • Womack KM, Meneveau C, Schultz MP (2019) Comprehensive shear stress analysis of turbulent boundary layer profiles. J Fluid Mech 879:360–389

    Article  MathSciNet  Google Scholar 

  • Zhang F, Zhou Z, Yang X, Zhang H (2021) A single formula for the law of the wall and its application to wall-modelled large-eddy simulation. arXiv:2104.09054

Download references

Acknowledgements

This work is supported by the United States Office of Naval Research (ONR) under ONR Grant N00014-20-1-2717 with Dr. Peter Chang as technical monitor. The authors thank Prof. J. Klewicki for providing the experimental data published in Morrill-Winter et al. (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Mahesh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Mahesh, K. A method to determine wall shear stress from mean profiles in turbulent boundary layers. Exp Fluids 63, 6 (2022). https://doi.org/10.1007/s00348-021-03352-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03352-y

Navigation