Skip to main content
Log in

On the Measurement of Wall-Normal Velocity Derivative in a Turbulent Boundary Layer

  • Original research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The wall-normal velocity derivative of ∂u/∂y is measured in a turbulent boundary layer, down to 2 wall units from the wall, using two parallel hot-wires. The momentum-thickness- and friction-velocity-based Reynolds numbers are 1450 and 584, respectively. The experimental results indicate that ∂u/∂y may be captured with an adequate accuracy given a separation (∆y) of 2 ~ 5 Kolmogorov length scales η between the two parallel hot-wires, slightly different from that (2η ~ 4η) required for a turbulent channel flow. The surrogate \( \overline{{\left(\Delta u/\Delta y\right)}^2} \) for \( \overline{{\left(\partial u/\partial y\right)}^2} \) displays a significant departure in the buffer layer from that in the turbulent channel flow, due to a difference in the large-scale coherent structures between the two flows. The skewness and kurtosis of ∂u/∂y differ markedly from their counterparts in a turbulent channel flow, which reflects a difference in the small-scale turbulent structures of the outer region between the two flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. George, W.K., Hussein, H.J.: Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)

    Article  MATH  Google Scholar 

  2. Antonia, R.A., Kim, J., Browne, L.W.B.: Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388 (1991)

    Article  MATH  Google Scholar 

  3. Antonia, R.A., Browne, L.W.B., Chambers, A.J.: On the spectrum of the transverse derivative of the streamwise velocity in a turbulent flow. Phys. Fluids. 27, 2628–2631 (1984)

    Article  MATH  Google Scholar 

  4. Pao, Y.H.: Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids. 8(6), 1063–1075 (1965)

    Article  Google Scholar 

  5. Antonia, R.A., Zhu, Y., Kim, J.: On the measurement of lateral velocity derivatives in turbulent flows. Exps. Fluids. 15, 65–69 (1993)

    Article  Google Scholar 

  6. Wyngaard, J.C.: Measurement of small-scale turbulence structure with hot wires. J. Sci. Instrum. (J. Phys. E). 1, 1105–1108 (1968)

    Article  Google Scholar 

  7. Wyngaard, J.C.: Spatial resolution of the vorticity meter and other hot-wire arrays. J. Sci. Instrum. 2, 983–987 (1969)

    Article  Google Scholar 

  8. Ng, H.C.H., Monty, J.P., Hutchins, N., Chong, M.S., Marusic, I.: Comparison of turbulent channel and pipe flows with varying Reynolds number. Exps. Fluids. 51(5), 1261–1281 (2011)

    Article  Google Scholar 

  9. Monty, J.P., Stewart, J.A., Williams, R.C., Chong, M.S.: Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147–156, (2007)

  10. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)

    Article  MATH  Google Scholar 

  11. Buschmann, M.H., Indinger, T., Gad-el-Hak, M.: Near-wall behavior of turbulent wall-bounded flows. Int. J. Heat and Fluid Flow. 30(5), 993–1006 (2009)

    Article  Google Scholar 

  12. Hoyas, S., Jiménez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids. 20(10), 101511 (2008)

    Article  MATH  Google Scholar 

  13. Tardu, S.: Near wall dissipation revisited. Int. J. Heat and Fluid Flow. 67, 104–115 (2017)

    Article  Google Scholar 

  14. Vreman, A.W., Kuerten, J.G.: Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. Phys. Fluids. 26(8), 085103 (2014)

    Article  Google Scholar 

  15. Pumir, A., Xu, H., Siggia, E.D.: Small-scale anisotropy in turbulent boundary layers. J. Fluid Mech. 804, 5–23 (2016)

    Article  MathSciNet  Google Scholar 

  16. Djenidi, L., Antonia, R.A., Talluru, M.K., Abe, H.: Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys. Rev. Fluids. 2(6), 064608 (2017)

    Article  Google Scholar 

  17. Bai, H.L., Zhou, Y., Zhang, W.G., Xu, S.J., Wang, Y., Antonia, R.A.: Active control of turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750(3), 316–354 (2014)

    Article  Google Scholar 

  18. Bai, H.L., Zhou, Y., Zhang, W.G., Antonia, R.A.: Streamwise vortices and velocity streaks in a locally drag-reduced turbulent boundary layer. Flow Turbul. Combust. 100, 391–416 (2018)

    Article  Google Scholar 

  19. Qiao, Z.X., Zhou, Y., Wu, Z.: Turbulent boundary layer under the control of different schemes. Proc. R. Soc. A. 473, 20170038 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiménez, J.: Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 27–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  22. Hutchins, N., Choi, K.S.: Accurate measurements of local skin friction coefficient using hot-wire anemometry. Prog. Aerosp. Sci. 38, 421–446 (2002)

    Article  Google Scholar 

  23. Chin, C., Ooi, A., Marusic, I., Blackburn, H.M.: The influence of pipe length on turbulence statistics computed from DNS data. Phys. Fluids. 22, 115107 (2010)

    Article  Google Scholar 

  24. Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)

    Article  MATH  Google Scholar 

  25. Tardu, S.: Near wall turbulence control by local time periodical blowing. Exp. Thermal Fluid Sci. 16(1), 41–53 (1998)

    Article  Google Scholar 

  26. Rathnasingham, R., Breuer, K.S.: Active control of turbulent boundary layers. J. Fluid Mech. 495, 209–233 (2003)

    Article  MATH  Google Scholar 

  27. Murlis, J., Tsai, H.M., Bradshaw, P.: The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech. 122, 13–56 (1982)

    Article  Google Scholar 

  28. Simpson, R.L., Strickland, J.H., Barr, P.W.: Features of a separating turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 79, 553–594 (1977)

    Article  Google Scholar 

  29. Abe, H., Kawamura, H., Matsuo, Y.: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng. 123(2), 382–393 (2001)

    Article  Google Scholar 

  30. Purtell, L.P., Klebanoff, P.S., Buckley, F.T.: Turbulent boundary layer at low Reynolds number. Phys. Fluids. 24(5), 802–811 (1981)

    Article  Google Scholar 

  31. Wu, X., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)

    Article  MATH  Google Scholar 

  33. Chin, C., Monty, J.P., Ooi, A.: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Int. J. Heat and Fluid Flow. 45, 33–40 (2014)

    Article  Google Scholar 

  34. Kreplin, H.P., Eckelmann, H.: Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids. 22(7), 1233–1239 (1979)

    Article  Google Scholar 

  35. Tang, S.L., Antonia, R.A., Djenidi, A.L., Zhou, Y.: Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J. Fluid Mech. 784, 109–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Browne, L.W.B., Antonia, R.A., Rajagopalan, S.: The spatial derivative of temperature in a turbulent flow and Taylor’s hypothesis. Phys. Fluids. 26(5), 1222–1227 (1983)

    Article  Google Scholar 

  37. Kim, J., Hussain, F.: Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids. 5, 695–706 (1993)

    Article  Google Scholar 

  38. Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A., Wallace, J.M.: Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids. 27, 025111 (2015)

    Article  Google Scholar 

  39. Krogstad, P.Å., Kaspersen, J.H., Rimestad, S.: Convection velocities in a turbulent boundary layer. Phys. Fluids. 10(04), 949–957 (1998)

    Article  Google Scholar 

  40. Kamruzzaman, M., Djenidi, L., Antonia, R.A., Talluru, K.M.: Scale-by-scale energy budget in a turbulent boundary layer over a rough wall. Int. J. Heat and Fluid Flow. 55, 2–8 (2015)

    Article  Google Scholar 

  41. Oyewola, O., Djenidi, L., Antonia, R.A.: Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction. Exp. Fluids. 44, 159–165 (2008)

    Article  Google Scholar 

  42. Abe, H., Antonia, R.A.: Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow. Phys. Fluids. 23(5), 055104 (2011)

    Article  Google Scholar 

  43. Trujillo, S., Bogard, D., Ball, K.: Turbulent boundary layer drag reduction using an oscillating wall. In: 4th Shear Flow Control Conference, vol. 1870, (1997)

    Google Scholar 

  44. Antonia, R.A., Mi, J.: Corrections for velocity and temperature derivatives in turbulent flows. Exps. Fluids. 14, 203–208 (1993)

    Article  Google Scholar 

  45. Stanislas, M., Perret, L., Foucaut, J.M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382, (2008)

  46. Yakhot, V., Bailey, S.C.C., Smits, A.J.: Scaling of global properties of turbulence and skin friction in pipe and channel flows. J. Fluid Mech. 652, 65–73 (2010)

    Article  MATH  Google Scholar 

  47. Bushnell, D.M., Mcginley, C.B.: Turbulence control in wall flows. Annu. Rev. Fluid Mech. 21(1), 1–20 (1989)

    Article  MATH  Google Scholar 

  48. Ewing, D., Hussein, H.J., George, W.K.: Spatial resolution of parallel hot-wire probes for derivative measurements. Exp. Thermal Fluid Sci. 11(2), 155–173 (1995)

    Article  Google Scholar 

  49. Balint, J.L., Wallace, J.M., Vukoslavčević, P.: The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J. Fluid Mech. 228, 53–86 (1991)

    Google Scholar 

  50. Honkan, A., Andreopoulos, Y.: Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 29–96 (1997)

    Article  MathSciNet  Google Scholar 

  51. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  52. Mestayer, P.: Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475–503 (1982)

    Article  Google Scholar 

  53. Saddoughi, S.G., Veeravalli, S.V.: Local isotropy in turbulent boundary layer at high Reynolds number. J. Fluid Mech. 268, 333–372 (1994)

    Article  Google Scholar 

  54. Johansson, A.V., Alfredsson, P.K., Kim, J.: Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579–599 (1991)

    Article  MATH  Google Scholar 

  55. Djenidi, L., Antonia, R.A.: A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate. Exps. Fluids. 53, 1005–1013 (2012)

    Article  Google Scholar 

  56. Eckelmann, H.: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65(3), 439–459 (1974)

    Article  Google Scholar 

  57. Abe, H., Antonia, R.A., Kawamura, H.: Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 1–32 (2009)

    Article  MATH  Google Scholar 

  58. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 6th edn. Pearson, Boston, MA (2012)

    Google Scholar 

  59. Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.S.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)

    Article  MATH  Google Scholar 

  60. Smits, A.J., McKeon, B.J., Marusic, I.: High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  61. Jiménez, J., Hoyas, S.: Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236, (2008)

Download references

Acknowledgements

YZ wishes to acknowledge support given to him from NSFC through grants 11632006, 91752109 and U1613226 and from Research Grants Council of Shenzhen Government through grants JCYJ20160531193220561 and JCY20160531192108351. SJX wishes to thank the support from “13th five-year plan” equipment development pre-research common technology grants through No. 41407020501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhou.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z.X., Xu, S.J. & Zhou, Y. On the Measurement of Wall-Normal Velocity Derivative in a Turbulent Boundary Layer. Flow Turbulence Combust 103, 369–387 (2019). https://doi.org/10.1007/s10494-019-00031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00031-1

Keywords

Navigation