Skip to main content
Log in

Air-filled soap bubbles for volumetric velocity measurements

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The use of air-filled soap bubbles for volumetric velocimetry in air flows is demonstrated experimentally. The tracers are produced by a novel system that seeds high number density soap bubble streams for particle image velocimetry applications. Particle number density considerations, spatial resolution and response time scales are discussed in light of current seeding techniques for volumetric measurements. The micro-soap bubbles are employed to measure the 3D velocity field in intermediate-sized flow volumes of 75–500 \(\text {cm}^3\), which are difficult to measure with existing tracers such as liquid droplets or relatively large helium-filled soap bubbles, while resolving small-scale flow variations. The mean volumetric concentration of approximately 50 tracers per \(\text {cm}^3\) provides a potential for high-resolution measurements. Finally, the methodology is demonstrated for velocity measurements in the wake of a sphere immersed in a turbulent boundary layer. Both the wake structures and the boundary layer statistics are characterized successfully with a reasonable spatial resolution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adrian R, Westerweel J (2011) Particle image velocimetry, vol 30. Cambridge University Press, Cambridge

    Google Scholar 

  • Afanasyev Y, Andrews G, Deacon C (2011) Measuring soap bubble thickness with color matching. Am J Phys 79(10):1079–1082

    Article  Google Scholar 

  • Atkinson C, Coudert S, Foucaut JM, Stanislas M, Soria J (2011) The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp Fluids 50(4):1031–1056

    Article  Google Scholar 

  • Bachalo WD (1980) Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry. Appl Opt 19(3):363–370

    Article  Google Scholar 

  • Boomsma A, Troolin D (2018) Time-resolved particle image identification and reconstruction for volumetric 4D-PTV. In: 19th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Boushaki T, Koched A, Mansouri Z, Lespinasse F (2017) Volumetric velocity measurements (V3V) on turbulent swirling flows. Flow Meas Instrum 54:46–55

    Article  Google Scholar 

  • Cafiero G, Discetti S, Astarita T (2015) Flow field topology of submerged jets with fractal generated turbulence. Phys Fluids 27(11):115,103

    Article  Google Scholar 

  • Caridi GCA, Ragni D, Sciacchitano A, Scarano F (2016) HFSB-seeding for large-scale tomographic PIV in wind tunnels. Exp Fluids 57(12):190

    Article  Google Scholar 

  • Clift R, Grace J, Weber M (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  • Discetti S, Coletti F (2018) Volumetric velocimetry for fluid flows. Meas Sci Technol 29(4):042,001

    Article  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947

    Article  Google Scholar 

  • Faleiros D, Tuinstra M, Sciacchitano A, Scarano F (2018) Helium-filled soap bubbles tracing fidelity in wall-bounded turbulence. Exp Fluids 59(3):56

    Article  Google Scholar 

  • Faleiros D, Tuinstra M, Sciacchitano A, Scarano F (2019) Generation and control of helium-filled soap bubbles for PIV. Exp Fluids 60(3):40

    Article  Google Scholar 

  • Ghaemi S, Scarano F (2011) Counter-hairpin vortices in the turbulent wake of a sharp trailing edge. J Fluid Mech 689:317–356

    Article  Google Scholar 

  • Gharib M, Kim D (2019) Method and apparatus for the production of microscale bubbles by depressurization cavitation. US Patent App. 16/134,136

  • Gibeau B, Ghaemi S (2018) A modular, 3D-printed helium-filled soap bubble generator for large-scale volumetric flow measurements. Exp Fluids 59(12):178

    Article  Google Scholar 

  • Gibeau B, Gingras D, Ghaemi S (2020) Evaluation of a full-scale helium-filled soap bubble generator. Exp Fluids 61(2):1–18

    Article  Google Scholar 

  • Humble R, Elsinga G, Scarano F, Van Oudheusden B (2009) Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J Fluid Mech 622:33–62

    Article  Google Scholar 

  • Jiménez J, Hoyas S, Simens MP, Mizuno Y (2010) Turbulent boundary layers and channels at moderate Reynolds numbers. J Fluid Mech 657:335–360

    Article  Google Scholar 

  • Kähler C, Sammler B, Kompenhans J (2002) Generation and control of tracer particles for optical flow investigations in air. Exp Fluids 33:736–742

    Article  Google Scholar 

  • Kerho MF, Bragg MB (1994) Neutrally buoyant bubbles used as flow tracers in air. Exp Fluids 16(6):393–400

    Article  Google Scholar 

  • Kühn M, Ehrenfried K, Bosbach J, Wagner C (2011) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50(4):929–948

    Article  Google Scholar 

  • Maxey M, Riley J (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889

    Article  Google Scholar 

  • Mei R (1996) Velocity fidelity of flow tracer particles. Exp Fluids 22(1):1–13

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406

    Article  Google Scholar 

  • Michaelis D, Bomphrey R, Henningsson P, Hollis D (2012) Reconstructing the vortex skeleton of the desert locust using phase averaged POD approximations from time resolved thin volume tomographic PIV. In: 16th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Payri R, Salvador F, Gimeno J, De la Morena J (2009) Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int J Heat Fluid Flow 30(4):768–777

    Article  Google Scholar 

  • Pröbsting S, Scarano F, Bernardini M, Pirozzoli S (2013) On the estimation of wall pressure coherence using time-resolved tomographic PIV. Exp Fluids 54(7):1567

    Article  Google Scholar 

  • Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, Berlin

    Book  Google Scholar 

  • Ragni D, Schrijer F, Oudheusden BV, Scarano F (2011) Particle tracer response across shocks measured by piv. Exp Fluids 50(1):53–64

    Article  Google Scholar 

  • Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012,001

    Article  Google Scholar 

  • Scarano F, Ghaemi S, Caridi CG, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56(2):42

    Article  Google Scholar 

  • Schanz D, Gesemann S, Schröder A (2016) Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57(5):70

    Article  Google Scholar 

  • Schneiders JF, Scarano F (2016) Dense velocity reconstruction from tomographic PTV with material derivatives. Exp Fluids 57(9):139

    Article  Google Scholar 

  • Schneiders JF, Caridi GC, Sciacchitano A, Scarano F (2016) Large-scale volumetric pressure from tomographic PTV with HFSB tracers. Exp Fluids 57(11):164

    Article  Google Scholar 

  • Schröder A, Geisler R, Elsinga GE, Scarano F, Dierksheide U (2008) Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 44(2):305–316

    Article  Google Scholar 

  • Staack K, Geisler R, Schröder A, Michaelis D (2010) 3D-3C-coherent structure measurements in a free turbulent jet. In: 15th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Terra W, Sciacchitano A, Scarano F (2017) Aerodynamic drag of a transiting sphere by large-scale tomographic-PIV. Exp Fluids 58(7):83

    Article  Google Scholar 

  • Terra W, Sciacchitano A, Scarano F, van Oudheusden B (2018) Drag resolution of a PIV wake rake for transiting models. Exp Fluids 59(7):120

    Article  Google Scholar 

  • Tropea C, Yarin AL (2007) Springer handbook of experimental fluid mechanics, vol 1. Springer, Berlin

    Book  Google Scholar 

  • Violato D, Moore P, Scarano F (2011) Lagrangian and Eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV. Exp Fluids 50(4):1057–1070

    Article  Google Scholar 

  • West G, Apelt C (1982) The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 10 4 and 10 5. J Fluid Mech 114:361–377

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TSI Incorporated. This work was partially supported by the U.S. National Science Foundation (NSF CBET-1510154). The authors gratefully acknowledge the insightful comments from the three referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo C. Barros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, D.C., Duan, Y., Troolin, D.R. et al. Air-filled soap bubbles for volumetric velocity measurements. Exp Fluids 62, 36 (2021). https://doi.org/10.1007/s00348-021-03134-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03134-6

Navigation