Skip to main content
Log in

Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Time-resolved particle image velocimetry (TR-PIV) and hydrogen bubble visualization are employed to study the effects of Reynolds number on the wake/shear layer interactions over multi-element airfoil (30P30N). The Reynolds number based on the stowed chord length (Rec) ranges from 9.3 × 103 to 3.05 × 104. According to the variation of dominated flow structures, a critical Rec interval from 1.27 × 104 to 1.38 × 104 is found, which is novel for the low-Reynolds-number flow over multi-element airfoil. The slat wakes can be divided into two types by this critical interval. When Rec is smaller than this critical interval, no roll-up occurs to the shear layer of slat cusp. Görtler vortices generated by a virtual curved wall dominate the slat wake. When Rec is larger than this critical interval, roll-ups occur to the shear layer of slat cusp, which is similar to the cases at high Reynolds number (Rec ~ 106). These roll-ups and their evolution result in the co-existence of spanwise vortices and streamwise vortices in the slat wake. Different kinds of slat wake result in different kinds of wake/shear layer interactions above the main element. The flow physics behind these complex interactions, especially the novel flow structures and their evolution, is analyzed in detail to contribute to the fundamental research of wake/shear layer interactions. When Görtler vortices dominate the slat wake, they could trigger streaky structures within the leading-edge separated shear layer of the main element. When spanwise vortices and streamwise vortices co-exist in the slat wake, novel spanwise “double secondary vortices” are triggered above the main element by the spanwise vortices of slat cusp shear layer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure is extracted from the figure 29 of Wang et al. (2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ashton N, West A, Mendonça F (2016) Flow dynamics past a 30P30N three-element airfoil using improved delayed detached-eddy simulation. AIAA J 29:3657–3667

    Article  Google Scholar 

  • Balzer W, Fasel HF (2016) Numerical investigation of the role of free-stream turbulence in boundary-layer separation. J Fluid Mech 801:289–321

    Article  MathSciNet  Google Scholar 

  • Boutilier MS, Yarusevych S (2012a) Effects of end plates and blockage on low-reynolds-number flows over airfoils. AIAA J 50:1547–1559

    Article  Google Scholar 

  • Boutilier MSH, Yarusevych S (2012b) Separated shear layer transition over an airfoil at a low Reynolds number. Phys Fluids 24:084105

    Article  Google Scholar 

  • Burgmann S, Schröder W (2008) Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp Fluids 45:675–691

    Article  Google Scholar 

  • Carmichael B (1981) Low Reynolds number airfoil survey, vol 1. NASA Technical Report, NASA-CR- 165803

  • Cenedese A, Del Prete Z, Miozzi M, Querzoli G (2005) A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic tilting-disk valves. Exp Fluids 39:322–335

    Article  Google Scholar 

  • Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50:1169–1182

    Article  Google Scholar 

  • Choudhari MM, Khorrami MR (2007) Effect of three-dimensional shear-layer structures on slat cove unsteadiness. AIAA J 45:2174–2186

    Article  Google Scholar 

  • Choudhari M, Lockard DP Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop. In: 21st AIAA/CEAS aeroacoustics conference (2015) p 2844

  • Choudhari MM, Yamamoto K (2012) Integrating CFD, CAA, and experiments towards benchmark datasets for airframe noise problems, NASA Conference Paper NF-1676L-14832

  • Coull JD, Hodson HP (2011) Unsteady boundary-layer transition in low-pressure turbines. J Fluid Mech 681:370–410

    Article  Google Scholar 

  • Deck S, Laraufie R (2013) Numerical investigation of the flow dynamics past a three-element aerofoil. J Fluid Mech 732:401–444

    Article  Google Scholar 

  • Deng S-C, Pan C, Wang J-J, Rinoshika A (2017) POD analysis of the instability mode of a low-speed streak in a laminar boundary layer. Acta Mech Sin 33:981–991

    Article  Google Scholar 

  • Dobrzynski W (2010) Almost 40 years of airframe noise research: what did we achieve? J Aircr 47:353–367

    Article  Google Scholar 

  • Gaster M (1969) The structure and behaviour of laminar separation bubbles. H.M. Stationery Office, pp 1–31

  • Hain R, Kähler C, Radespiel R (2009) Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J Fluid Mech 630:129–153

    Article  Google Scholar 

  • Haines A (1994) Scale Effects on Aircraft and Weapon Aerodynamics (Les Effets d’Echelle et l’Aerodynamique des Aeronefs et des Systemes d’Armes). DTIC Document

  • Hansen H, Thiede P, Moens F, Rudnik R, Quest J (2004) Overview about the European high lift research programme EUROLIFT AIAA Paper 767:2004

  • He G, Wang J, Pan C (2013) Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J Fluid Mech 718:116–130

    Article  Google Scholar 

  • He G-S, Pan C, Feng L-H, Gao Q, Wang J-J (2016) Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J Fluid Mech 792:274–306

    Article  MathSciNet  Google Scholar 

  • Istvan MS, Yarusevych S (2018) Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Exp Fluids 59:52

    Article  Google Scholar 

  • Jenkins LN, Khorrami MR, Choudhari M (2004) Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements AIAA paper 2801:2004

  • Jones L, Sandberg R, Sandham N (2008) Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J Fluid Mech 602:175–207

    Article  Google Scholar 

  • Kurelek JW, Lambert AR, Yarusevych S (2016) Coherent structures in the transition process of a laminar separation bubble. AIAA J 54(8):2295–2309

    Article  Google Scholar 

  • Kyriakides NK, Kastrinakis EG, Nychas SG, Goulas A (1999) Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA J 37:1197–1205

    Article  Google Scholar 

  • Lang M, Rist U, Wagner S (2004) Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp Fluids 36:43–52

    Article  Google Scholar 

  • Lengani D, Simoni D, Ubaldi M, Zunino P (2014) POD analysis of the unsteady behavior of a laminar separation bubble Experimental. Thermal Fluid Sci 58:70–79

    Article  Google Scholar 

  • Lissaman P (1983) Low-Reynolds-number airfoils. Annu Rev Fluid Mech 15:223–239

    Article  Google Scholar 

  • Ma L, Feng L, Pan C, Gao Q, Wang J (2015) Fourier mode decomposition of PIV data Science, China. Technol Sci 58:1935–1948

    Google Scholar 

  • Makiya S, Inasawa A, Asai M (2010) Vortex shedding and noise radiation from a slat trailing edge. AIAA J 48:502–509

    Article  Google Scholar 

  • Mandal AC, Dey J (2011) An experimental study of boundary layer transition induced by a cylinder wake. J Fluid Mech 684:60–84

    Article  Google Scholar 

  • Marxen O, Henningson DS (2011) The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J Fluid Mech 671:1–33

    Article  Google Scholar 

  • Marxen O, Lang M, Rist U, Levin O, Henningson DS (2009) Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J Fluid Mech 634:165–189

    Article  Google Scholar 

  • Marxen O, Lang M, Rist U (2013) Vortex formation and vortex breakup in a laminar separation bubble. J Fluid Mech 728:58–90

    Article  MathSciNet  Google Scholar 

  • McAuliffe BR, Yaras MI (2009) Transition mechanisms in separation bubbles under low- and elevated-freestream turbulence. J Turbomach 132:011004–011004

    Article  Google Scholar 

  • Mueller TJ, DeLaurier JD (2003) Aerodynamics of small vehicles. Annu Rev Fluid Mech 35:89–111

    Article  Google Scholar 

  • Ovchinnikov V, Piomelli U, Choudhari MM (2006) Numerical simulations of boundary-layer transition induced by a cylinder wake. J Fluid Mech 547:413–441

    Article  Google Scholar 

  • Pagani CC Jr, Souza DS, Medeiros MA (2016) Slat noise: aeroacoustic beamforming in closed-section wind tunnel with numerical comparison. AIAA J 54:2100–2115

    Article  Google Scholar 

  • Pan C, Wang JJ, Zhang PF, Feng LH (2008) Coherent structures in bypass transition induced by a cylinder wake. J Fluid Mech 603:367–389

    Article  Google Scholar 

  • Pan C, Wang H, Wang J (2013) Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas Sci Technol 24:055305

    Article  Google Scholar 

  • Pan C, Xue D, Xu Y, Wang J, Wei R (2015) Evaluating the accuracy performance of Lucas–Kanade algorithm in the circumstance of PIV application Science China. Phys Mech Astron 58:1–16

    Article  Google Scholar 

  • Paschal K, Jenkins L, Yao C (2000) Unsteady slat-wake characteristics of a high-lift configuration. AIAA paper 139:2000

  • Pascioni KA, Cattafesta LN (2018) Unsteady characteristics of a slat-cove flow field. Phys Rev Fluids 3:034607

    Article  Google Scholar 

  • Pascioni KA, Cattafesta LN, Choudhari MM (2014) An Experimental investigation of the 30P30N multi-element high-lift airfoil. 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, 16–20 June 2014

  • Schrader L-U, Brandt L, Mavriplis C, Henningson DS (2010) Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J Fluid Mech 653:245–271

    Article  Google Scholar 

  • Simoni D, Ubaldi M, Zunino P, Lengani D, Bertini F (2012) An experimental investigation of the separated-flow transition under high-lift turbine blade pressure gradients flow. Turbul Combust 88:45–62

    Article  Google Scholar 

  • Simoni D, Lengani D, Ubaldi M, Zunino P, Dellacasagrande M (2017) Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers. Exp Fluids 58:66

    Article  Google Scholar 

  • Souza DS, Rodríguez D, Simões LGC, Medeiros MAF (2015) Effect of an excrescence in the slat cove: flow-field, acoustic radiation and coherent structures. Aerosp Sci Technol 44:108–115

    Article  Google Scholar 

  • Squire L (1989) Interactions between wakes and boundary-layers. Prog Aerosp Sci 26:261–288

    Article  Google Scholar 

  • Van Dam C (2002) The aerodynamic design of multi-element high-lift systems for transport airplanes. Prog Aerosp Sci 38:101–144

    Article  Google Scholar 

  • Wang J-S, Feng L-H, Wang J-j, Li T (2018) Görtler vortices in low-Reynolds-number flow over multi-element airfoil. J Fluid Mech 835:898–935

    Article  Google Scholar 

  • Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  • Winslow J, Otsuka H, Govindarajan B, Chopra I (2017) Basic Understanding of airfoil characteristics at low Reynolds numbers (10 4–10 5) J Aircr 55:1–12

    Google Scholar 

  • Ying SX, Spaid FW, McGinley CB, Rumsey CL (1999) Investigation of confluent boundary layers in high-lift flows. J Aircr 36:550–562

    Article  Google Scholar 

  • Zhu H-Y, Wang C-Y, Wang H-P, Wang J-J (2017) Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder. J Fluid Mech 831:743–778

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11761131009, 11721202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J. & Kim, K.C. Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil. Exp Fluids 60, 16 (2019). https://doi.org/10.1007/s00348-018-2662-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2662-5

Navigation