Skip to main content
Log in

Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high-speed camera

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The evaporation of falling diethyl ether droplets is measured by following droplets along their trajectories. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera and reconstructed with an “inverse problems” approach algorithm previously tested (Chareyron et al. New J Phys 14:43039, 2012). Once evaporation starts, the interfaces of the droplets are surrounded by air/vapor mixtures with refractive index gradients that modify the holograms. The central part of the droplets holograms is unusually bright compared to what is expected and observed for non-evaporating droplets. The reconstruction process is accordingly adapted to measure the droplets diameter along their trajectory. The diethyl ether being volatile, the droplets are found to evaporate in a very short time: of the order of 70 ms for a 50–60 μm diameter at an ambient temperature of 25 °C. After this time, the diethyl ether has fully evaporated and droplets diameter reaches a plateau. The remaining droplets are then only composed of water, originating from the cooling and condensation of the humid air at the droplet surface. This assertion is supported by two pieces of evidence: (i) by estimating the evolution of droplets refractive index from light scattering measurements at rainbow angle and (ii) by comparing the evaporation rate and droplets velocities obtained by digital holography with those calculated with a simple model of evaporation/condensation. The overall results show that the in-line digital holography with “inverse problems” approach is an accurate technique for studying fast evaporation from a Lagrangian point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618

    Article  Google Scholar 

  • Airy GB (1838) On the intensity of light in the neighbourhood of a caustic. Trans Camb Phil Soc 6(3):379–402

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. Wiley, New York

    Google Scholar 

  • Birouk M, Gökalp I (2006) Current status of droplet evaporation in turbulent flows. Prog Energy Comb Sci 32(4):408–423

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Bourgoin M, Ouellette NT, Xu H, Berg J, Bodenschatz E (2006) The role of pair dispersion in turbulent flow. Science 311:835–838

    Article  Google Scholar 

  • Chareyron D, Marié JL, Fournier C, Gire J, Grosjean N, Denis L, Lance M, Méès L (2012) Testing an in-line digital holography “inverse method” for the Lagrangian tracking of evaporating droplets in homogeneous nearly-isotropic turbulence. New J Phys 14, 43039

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  • Fournier C, Denis L, Fournel T (2010) On the single point resolution of on-axis digital holography. J Opt Soc Am A 27(8):1856–1862

    Article  Google Scholar 

  • Fournier C, Denis L, Thiébaut E, Fournel T, Seifi M (2011) Inverse problems approaches for digital hologram reconstruction. In: Three dimensional imaging, visualization, and display 2011, Orlando, United States, vol 8043, pp 1–14.

  • Frössling N (1938) Über die verdunstung fallender tropfen. Gerlands Beitr Geophys 52:170–216

    Google Scholar 

  • Garcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ (2006) Digital in-line holographic microscopy. Appl Opt 45(5):836–850

    Article  Google Scholar 

  • Gire J, Denis L, Fournier C, Thiébaut E, Soulez F, Ducottet C (2008) Digital holography of particles: benefits of the “inverse-problem“ approach. M, Sci Technol 19(7):074005

    Google Scholar 

  • Glover AR, Skippon SM, Boyle RD (1995) Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems. Appl Opt 34(36):8409–8421

    Article  Google Scholar 

  • Gopalan B, Malkiel E, Katz J (2008) Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Phys Fluids 20(9):095102

    Google Scholar 

  • Green DW, Perry RH (2008) Perry’s chemical engineer’s handbook, eight edn. Mc Graw Hill, New York

    Google Scholar 

  • Guella S, Alexandrova S, Saboni A (2008) Evaporation d’une gouttelette en chute libre dans l’air. Int J Therm Sci 47(7):886–898

    Article  Google Scholar 

  • Han X, Ren KF, Wu ZS, Corbin F, Gouesbet G, Gréhan G (1998) Characterization of initial disturbances in liquid jet by rainbow sizing. Appl Opt 37(36):8498–8503

    Article  Google Scholar 

  • Han X, Ren KF, Méès L, Gouesbet G (2001) Surface waves/geometrical rays interferences: numerical and experimental behavior at rainbow angles. Optics Commun 195(1–4):49–54

    Article  Google Scholar 

  • Hubbard GL, Denny VE, Mills AF (1975) Droplet evaporation: effects of transients and variable properties. Int J Heat Mass Transf 18:1003–1008

    Article  Google Scholar 

  • Katz J, Sheng J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42:531–555

    Article  Google Scholar 

  • Law CK (1982) Recent advances in droplet vaporization and combustion. Prog Energy Combust Sci 8(3):171–201

    Article  Google Scholar 

  • Law CK, Xiong TY, Wang CH (1987) Alcohol droplet vaporization in humid air. Int J Heat Mass Transf 30(7):1435–1443

    Article  Google Scholar 

  • Lebrun D, Allano D, Méès L, Walle F, Corbin F, Boucheron R, Fréchou D (2011) Size measurement of bubbles in a cavitation tunnel by digital in-line holography. Appl Opt 50(34):H1–H9

    Article  Google Scholar 

  • Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008), Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10, 125013

    Google Scholar 

  • Méès L, Grosjean N, Chareyron D, Marié JL, Seifi M, Fournier C (2013) Evaporating droplet hologram simulation for digital in-line holography set-up with divergent beam. J Opt Soc Am A 30(10):2021–2028

    Article  Google Scholar 

  • Meng X, Zheng P, Wu J, Liu Z (2008) Density and viscosity measurements of diethyl ether from 243 to 373K and up to 20 MPa. Fluid Phase Equilib 271:1–5

    Article  Google Scholar 

  • Mordant N, Lévèque E, Pinton JF (2004) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J Phys 6:116

    Article  Google Scholar 

  • Nguyen D, Honnery D, Soria J (2011) Measuring evaporation of micro-fuel droplets using magnified dih and dpiv. Exp Fluids 50(4):949–959

    Article  Google Scholar 

  • Ragucci R, Cavaliere A, Massoli P (1990) Drop sizing by laser light scattering exploiting intensity angular oscillation in the mie regime. Part Part Syst Charact 7(1–4):221–225

    Article  Google Scholar 

  • Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48(141–146):173–180

    Google Scholar 

  • Reveillon J, Demoulin FX (2007) Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J Fluid Mech 583:273–302

    Article  MATH  Google Scholar 

  • Royer H (1974) An application of high-speed microholography: the metrology of fogs. Nouv Rev Opt 5(2):87–93

    Article  Google Scholar 

  • Saengkaew S, Charinpanitkul T, Vanisri H, Tanthapanichakoon W, Biscos Y, Garcia N, Lavergne G, Méès L, Gouesbet G, Gréhan G (2007) Rainbow refractrometry on particles with radial refractive index gradients. Exp in Fluids 43(4):595–601

    Article  Google Scholar 

  • Seifi M, Fournier C, Grosjean N, Méès L, Marié JL, Denis L (2013) Accurate 3D tracking and size measurement of evaporating droplets using an in-line digital holography and “inverse problems” reconstruction approach. Opt Express 21(23). doi:10.1364/OE.21.027964

  • Sirignano WA (1983) Fuel droplet vaporization and spray combustion theory. Progr Energy Comb Sci 9(4):291–322

    Article  Google Scholar 

  • Soulez F, Denis L, Fournier C, Thiébaut E, Goepfert C (2007a) Inverse-problem approach for particle digital holography: accurate location based on local optimization. J Opt Soc Am A 24(4):1164–1171

    Article  Google Scholar 

  • Soulez F, Denis L, Thiébaut E, Fournier C, Goepfert C (2007b) Inverse problem approach in particle digital holography: out-of-field particle detection made possible. J Opt Soc Am A 24(12):3708–3716

    Article  Google Scholar 

  • Toker GR, Stricker J (1996) Holographic study of suspended vaporizing volatile liquid droplets in still air. Int J Heat Mass Transf 39(16):3475–3482

    Article  Google Scholar 

  • Toker GR, Stricker J (1998) Study of suspended vaporizing volatile liquid droplets by an enhanced sensitivity holographic technique: additional results. Int J Heat Mass Transf 41(16):2553–2555

    Article  Google Scholar 

  • Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404

    Article  MathSciNet  Google Scholar 

  • Tropea C (2011) Optical particle characterization in flows. Annu Rev Fluid Mech 43:399–426

    Article  Google Scholar 

  • Tsilingiris PT (2008) Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C. Energy Convers Manag 49(5):1098–1110

    Article  Google Scholar 

  • Tyler GA, Thompson BJ (1976) Fraunhofer holography applied to particle size analysis a reassessment. J Mod Opt 23(9):685–700

    Google Scholar 

  • van Beeck JPAJ, Riethmuller ML (1996) Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity. Appl Opt 35(13):2259–2266

    Article  Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

  • Vikram CS, Billet ML (1988) Some salient features of in-line fraunhofer holography with divergent beams. Optik 78(2):80–83

    Google Scholar 

  • Volk R, Mordant N, Verhille G, Pinton JF (2008), Laser Doppler measurement of inertial particle and bubble accelerations in turbulence. EPL 81:34002

    Google Scholar 

  • Voth GA, Laporta A, Crawford AM, Alexander J, Bodenschatz E (2002) Measurement of particle acceleration in fully developed turbulence. J Fluid Mech 469:121–160

    Article  MATH  Google Scholar 

  • Wassiljewa A (1904) Wärmeleitung in gasgemischen. Physikalische Zeitschrift 5(22):737–742

    MATH  Google Scholar 

  • Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18(4):517

    Article  Google Scholar 

  • Yuen M, Chen LW (1976) On drag of evaporating droplets. Combut Sci and Technol 14(4–6):147–154

    Article  Google Scholar 

Download references

Acknowledgments

This work takes place in the MORIN project (3D Optical Measurements for Research and INdustry). It has been founded by the “Programme Avenir Lyon Saint-Etienne” of Lyon University in the framework of “investissement d’avenir” (ANR-11-IDEX-0007). This work has been also supported by ANR program TEC2 (Turbulence Evaporation and Condensation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Marié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marié, J.L., Grosjean, N., Méès, L. et al. Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high-speed camera. Exp Fluids 55, 1708 (2014). https://doi.org/10.1007/s00348-014-1708-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1708-6

Keywords

Navigation