Skip to main content
Log in

Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic turbulence

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The evaporation rate of diethyl ether droplets dispersing in a homogeneous, nearly isotropic turbulence is measured by following droplets along their trajectory. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera (3 kHz), and droplets trajectories are reconstructed with an “inverse problem approach” (IPA) algorithm previously used in Chareyron et al. (New J Phys 14:043039, 2012) and Marié et al. (Exp Fluid 55(4):1708, 2014. doi:10.1007/s00348-014-1708-6). The thermal/vapor concentration wakes developing around the droplets are visible behind each hologram. A standard reconstruction process is applied, showing that these wakes are aligned with the relative Lagrangian velocity seen by droplets at each instant. This relative velocity is that obtained from the dynamic equation of droplets motion and the positions and diameter of the droplets measured by holography and the IPA reconstruction. Sequences of time evolution of droplets 3D positions, diameter and 3D relative velocity are presented. In a number of cases, the evaporation rate of droplets changes along the trajectory and deviates from the value estimated with a standard film model of evaporation. This shows that turbulence may significantly influence the phase change process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  • Birouk M, Gökalp I (2006) Current status of droplet evaporation in turbulent flows. Prog Energy Combust Sci 32(4):408–423

    Article  Google Scholar 

  • Born M, Wolf E (1980) Principles of optics. Pergamon press, Oxford

    Google Scholar 

  • Charalampous G, Hardalupas Y (2010) Clustering of mono-disperse and poly-disperse particles in a box of turbulence. In: 7th international conference on multiphase flows, Tempa

  • Chareyron D, Marié JL, Fournier C, Gire J, Grosjean N, Denis L, Lance M, Méès L (2012) Testing an in-line digital holography “inverse method” for the Lagrangian tracking of evaporating droplets in homogeneous nearly-isotropic turbulence. New J Phys 14:043039

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  • Fournier C, Denis L, Thiébaut E, Fournel T, Seifi M (2011) Inverse problems approaches for digital hologram reconstruction. In: Three dimensional imaging, visualization, and display, vol 8043. Orlando, pp 1–14

  • Gire J, Denis L, Fournier C, Thiébaut E, Soulez F, Ducottet C (2008) Digital holography of particles: benefits of the “inverse-problem“ approach. Meas Sci Technol 19(7):074005

    Article  Google Scholar 

  • Goepfert C, Marié JL, Chareyron D, Lance M (2010) Characterization of a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp Fluid 48(5):809–822

    Article  Google Scholar 

  • Gopalan B, Malkiel E, Katz J (2008) Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Phys Fluid 20(9):095102

    Article  MATH  Google Scholar 

  • Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluid 36:444–454

    Article  Google Scholar 

  • Katz J, Sheng J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42:531–555

    Article  Google Scholar 

  • Knubben G, van der Geld CWM (2001) Drop size distribution evolution after continuous or intermittent injection of butane or propane in a confined air flow. Appl Therm Eng 21:787–811

    Article  Google Scholar 

  • Lee ER (2003) Microdrop generation. CRC Press, Boca Raton

    Google Scholar 

  • Lian H, Charalampous G, Hardalupas Y (2013) Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence. Exp Fluid 54:1525. doi:10.1007/s00348-013-1525-3

    Article  Google Scholar 

  • Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008) Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10:125013

    Article  Google Scholar 

  • Marié JL, Grosjean N, Méès L, Seifi M, Fournier C, Barbier B, Lance M (2014) Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high speed camera. Exp Fluid 55(4):1708. doi:10.1007/s00348-014-1708-6

    Article  Google Scholar 

  • Méès L, Grosjean N, Chareyron D, Marié JL, Seifi M, Fournier C (2013) Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam. J Opt Soc Am A 30(10):2021–2028

    Article  Google Scholar 

  • Michaelides EE (2006) Particles, bubbles and drops: their motion, heat and mass transfer. World Scientific, Singapore

    Book  Google Scholar 

  • Nguyen D, Honnery D, Soria J (2011) Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV. Exp Fluid 50(4):949–959

    Article  Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Reveillon J, Demoulin FX (2007) Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J Fluid Mech 583:273–302

    Article  MATH  Google Scholar 

  • Seifi M, Fournier C, Grosjean N, Méès L, Marié JL, Denis L (2013) Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach. Opt Express 21(23):27964–27980. doi:10.1364/OE.21.027964

    Article  Google Scholar 

  • Sirignano WA (2010) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Soulez F, Denis L, Fournier C, Thiébaut E, Goepfert C (2007a) Inverse-problem approach for particle digital holography: accurate location based on local optimization. J Opt Soc Am A 24(4):1164–1171

    Article  MathSciNet  Google Scholar 

  • Soulez F, Denis L, Thiébaut E, Fournier C, Goepfert C (2007b) Inverse problem approach in particle digital holography: out-of-field particle detection made possible. J Opt Soc Am A 24(12):3708–3716

    Article  Google Scholar 

  • Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the ANR program TEC2 (Turbulence Evaporation and Condensation). The holographic IPA developments have been performed in the frame of the MORIN project (3D Optical Measurements for Research and INdustry) and supported by the “Programme Avenir Lyon Saint-Etienne” of Lyon University in the framework of “investissement d’avenir” (ANR-11-IDEX-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Marié.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marié, J.L., Tronchin, T., Grosjean, N. et al. Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic turbulence. Exp Fluids 58, 11 (2017). https://doi.org/10.1007/s00348-016-2292-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2292-8

Keywords

Navigation