Skip to main content
Log in

On determining wall shear stress in spatially developing two-dimensional wall-bounded flows

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A full momentum integral-based method for determining wall shear stress is presented. The method is mathematically exact and has the advantage of having no explicit streamwise gradient terms. It is applicable for flows that change rapidly in the streamwise direction and, in particular, to flows with ill-defined outer boundary conditions or when the measurement grid does not extend over the whole boundary layer thickness. The method is applied to two different experimental plane turbulent wall jet data sets for which independent estimates of wall shear stress were known, and the different results compare favorably. Complications owing to experimental limitations and measurement error in determining wall shear stress from the proposed method are presented, and mitigating strategies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In order to convert the given viscous units to physical dimensions, ρ = 1.18 kg/m3, ν = 1.57 × 10−5 m2/s and u τ  = 0.1 m/s are used.

References

  • Curd EF (1981) Possible applications of wall jets in controlling air contaminants. Ann Occup Hyg 24(1):133–146. doi:10.1093/annhyg/24.1.133

    Article  Google Scholar 

  • Fernholz HH, Janke G, Schober M, Wagner PM, Warnack D (1996) New developments and applications of skin-friction measuring techniques. Meas Sci Technol 7:1396–1409. doi:10.1088/0957-0233/7/10/010

    Article  Google Scholar 

  • Fukagata K, Iwamotu K, Kasagi N (2002) Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids 14(11):L73–L76. doi:10.1063/1.1516779

    Article  Google Scholar 

  • George WK, Abrahamsson H, Eriksson J, Karlsson RI, Löfdahl L, Wosnik M (2000) A similarity theory for the turbulent plane wall jet without external stream. J Fluid Mech 425:367–411. doi:10.1017/S002211200000224X

    Article  MATH  Google Scholar 

  • Gupta AK, Kaplan RE (1972) Statistical characteristics of Reynolds stress in a turbulent boundary layer. Phys Fluids 15(6):981–985. doi:10.1063/1.1694060

    Article  Google Scholar 

  • Johansson TG, Castillo L (2002) Near-wall measurements in turbulent boundary layers using laser doppler anemometry. In Joint US ASME-European fluids engineering summer conference. Jul 14–18, Montreal, Quebec, Canada, FEDSM 2002-31070

  • Johansson TG, Mehdi F, Naughton JW (2006) Some problems with near-wall measurements and the determination of the wall shear stress. In 25th AIAA aerodynamic measurement technology and ground testing conference. 5–8 June, San Francisco, AIAA 2006-3833 (invited)

  • Karlsson R, Eriksson J, Persson J (1993) An experimental study of a two-dimensional plane turbulent wall jet. Technical report, Vattenfall Utveckling AB, Älvkarleby Laboratory, Sweden, VU-S93-B36

  • Karlsson RI, Johansson TG (1986) LDV measurements of higher order moments of velocity fluctuations in a turbulent boundary layer. In International Symposium on Applications of Laser Anemometry to Fluid Mechanics III. 7–9 July, Lisbon, Portugal, A87-40701, pp 17-35

  • Klewicki JC (2007) Handbook of experimental fluid mechanics, chapter 12.2: Measurement of wall shear stress. In Tropea C, Yarin J, Foss A (eds) Cambridge University Press. Cambridge, pp 876–886

  • Launder BE, Rodi W (1983) The turbulent wall jet—measurements and modeling. Ann Rev Fluid Mech 15:429–459. doi:10.1146/annurev.fl.15.010183.002241

    Article  Google Scholar 

  • Mehdi F (2006) Skin-friction measurements in a wall jet. Master’s thesis, Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden

  • Mehdi F, Klewicki JC, White CM (2010) Mean momentum balance analysis of rough-wall turbulent boundary layers. Phys D 239(14):1329–1337. doi:10.1016/j.physd.2009.06.008

    Article  MATH  Google Scholar 

  • Mehdi F, White CM (2011) Integral form of the skin friction coefficient suitable for experimental data. Exp Fluids 50:43–51. doi:10.1007/s00348-010-0893-1

    Article  Google Scholar 

  • Mehdi F, Klewicki JC, White CM (2013) Mean force structure and its scaling in rough-wall turbulent boundary layers. J Fluid Mech 731:682–712. doi:10.1017/jfm.2013.385

    Article  Google Scholar 

  • Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurements. Prog Aerosp Sci 38(6–7):515–570. doi:10.1016/S0376-0421(02)00031-3

    Article  Google Scholar 

  • Naughton JW, Viken SA, Greenblatt D (2006) Skin friction measurements on the NASA hump model. AIAA J 44(6):1255–1265. doi:10.2514/1.14192

    Article  Google Scholar 

  • Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows—the necessity of an accurate determination of the wall position. Prog Aerosp Sci 46(8):353–387. doi:10.1016/j.paerosci.2010.04.002

    Article  Google Scholar 

  • Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126. doi:10.1017/S0022112010003113

    Article  MATH  Google Scholar 

  • Spalart PR (1988) Direct simulation of a turbulent boundary layer up to R θ  = 1410. J Fluid Mech 187:61–98. doi:10.1017/S0022112088000345

    Article  MATH  Google Scholar 

  • Tavoularis S (2005) Measurement in fluid mechanics. Cambridge University Press, Cambridge, pp 328–341

    MATH  Google Scholar 

  • Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74. doi:10.1017/S0022112003005251

    Article  MATH  Google Scholar 

  • Winter KG (1977) An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Prog Aerosp Sci 18:1–57. doi:10.1016/0376-0421(77)90002-1

    Article  Google Scholar 

  • Wygnanski I, Katz Y, Horev E (1992) On the applicability of various scaling laws to the turbulent wall jet. J Fluid Mech 234:669–690. doi:10.1017/S002211209200096X

    Article  Google Scholar 

Download references

Acknowledgments

The data of Karlsson et al. (1993) were obtained from the ERCOFTAC “Classic Collection” Database. The authors are thankful to the CFD and Turbulence Mechanics research group at the University of Manchester— cfd.mace.manchester.ac.uk/ercoftac—for hosting the database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraz Mehdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, F., Johansson, T.G., White, C.M. et al. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp Fluids 55, 1656 (2014). https://doi.org/10.1007/s00348-013-1656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1656-6

Keywords

Navigation