Skip to main content
Log in

Aerodynamic drag reduction by vertical splitter plates

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

L A :

Length of the Ahmed body

l A :

Rear window length

w A :

Width of the Ahmed body

H A :

Total height of the Ahmed body

h :

Height of the geometry front part

w :

Width of the geometry front part

Re :

Reynolds number based on the geometry length

\( \overline{\overline{{\tau_{\mu } }}} \) :

Viscous shear stress tensor

\( \overline{\overline{{\tau_{t} }}} \) :

Turbulent shear stress tensor

P io :

Farfield total pressure

P :

Static pressure

dσ :

Surface element

\( \vec{n} \) :

Normal vector unit

\( \vec{x} \) :

Vector unit in the longitudinal plane

\( \Upsigma \) :

Surface of the outlet boundaries around Ahmed body (\( \Upsigma = \Upsigma_{\text{L}} + S_{\text{e}} + S_{\text{s}} + S_{\text{c}} \))

\( \Upsigma_{\text{L}} \) :

Lateral surface

\( S_{\text{e}} \) :

Inlet section (engine compartment)

\( S_{\text{s}} \) :

Outlet section (engine compartment)

\( S_{\text{c}} \) :

Body surface

\( \vec{V}_{0} \) :

Upstream velocity vector

\( \vec{V} \) :

Local velocity vector

V x , V y , V z :

Velocity components

\( (\vec{x},\,\vec{y},\,\vec{z}) \) :

Vector unit system related to the model

S :

Transversal section immediately downstream of the bluff body

C p :

Static pressure coefficient

ρ :

Density

α:

Angle between the rear window and the upstream flow direction

β :

Skew angle

λ :

Orientation angle of the splitter plate related to the body

θ :

Angle between the splitter plate and the velocity V o

C d :

Aerodynamic drag coefficient

C dref :

Reference aerodynamic drag coefficient

References

  • Ahmed SR, Ramm R, Faltin G (1984) Some salient features of the time averaged ground vehicle wake. SAE technical Paper Series 840300

  • Ardonceau P, Amani G (1992) Remarks on the relation between lift induced drag and vortex drag. Eur J Mech B 11(4):455–460

    Google Scholar 

  • Arnald D, Cousteix J, Michel R (1976) Couche limite se développant avec gradient de pression positif dans un écoulement extérieur turbulent, La Recherche Aérospatiale, n°1976-1

  • Baudoin JF, Aider JL (2008) Drag and lift reduction of a 3D bluff body using flaps. Exp Fluids 44:491–501. doi:10.1007/s00348-007-0392-1

    Article  Google Scholar 

  • Cousteix J (1989) Aérodynamique, Turbulence et Couche Limite. Cepadues-Editions, Toulouse, pp 11–14

  • Gad-el-Hak M (1996) Compliant coatings: a decade of progress. In: Workshop on flow control—fundamentals and practices, Cargèse, Corse, 1996

  • Gilliéron P, Chometon F (1999) Modelling of stationary three dimensional detached airflows around an Ahmed reference body. In: Proceedings of the third international workshop on vortex, ESAIM, vol 7, pp 173–182

  • Granville PS (1985) Mixing length formulation for turbulent boundary layers over arbitrarily rough surfaces. J Ship Res 29(4):223–233

    Google Scholar 

  • International Energy Agency (IEA) (2007) World energy outlook 2007—China and India insights (executive summary). International Energy Agency, ISBN: 978-92-64-02730-5

  • Kourta A, Vitale E (2008) Analysis and control of cavity flow. Phys Fluids 20:0771041 (10 pp)

    Google Scholar 

  • Levallois E, Gilliéron P (2005) Contrôle des écoulements en aérodynamique automobile & réduction de traînée par éléments séparateurs - Analyse par PIV, Colloque National de Visualisation et de Traitement d’Images en Mécanique des Fluides, Fluvisu11, Lyon, 6–9 juin

  • Mair WA (1965) The effect of a rear mounted disc on the drag of a blunt based body of revolution. Aeronaut Q 16:350–360

    Google Scholar 

  • Onorato M, Costelli A, Garonne A (1984) Drag measurement through wake analysis, SAE, SP-569. In: International congress & exposition, Detroit, MI, 27 February–2 March 1984, pp 85–93

  • Passenger Cars, University of Sheffield and University of Michigan, Produced by SASI Group (Sheffield) and Mark Newmann (Michigan), Map031, 2006

  • Roshko A, Koenig K (1978) Interaction effects on the drag of bluff bodies in tandem. In: Sovran G, Morel T, Mason WT (eds) Aerodynamic drag mechanisms of bluff bodies and road vehicles. Plenum, New York, pp 253–286

  • Rossiter JE (1964) Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memo n° 3438

  • Spohn A, Gilliéron P (2002) Flow separations generated by a simplified geometry of an automotive vehicle. In: IUTAM symposium on unsteady separated flows, Toulouse, France, 8–12 April 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeddine Kourta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilliéron, P., Kourta, A. Aerodynamic drag reduction by vertical splitter plates. Exp Fluids 48, 1–16 (2010). https://doi.org/10.1007/s00348-009-0705-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0705-7

Keywords

Navigation