Skip to main content
Log in

Digital particle image thermometry/velocimetry: a review

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14–32, 1990; Baughn in Int J Heat Fluid Flow 16:365–375, 1995; Roberts and East in J Spacecr Rockets 33:761–768, 1996; Wozniak et al. in Appl Sci Res 56:145–156, 1996; Behle et al. in Appl Sci Res 56:113–143, 1996; Stasiek in Heat Mass Transf 33:27–39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1–10, 2002; Stasiek et al. in Opt Laser Technol 38:243–256, 2006; Smith et al. in Exp Fluids 30:190–201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487–561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology’s most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66

Similar content being viewed by others

Notes

  1. Perhaps the most common example of a lyotropic liquid crystal is soap, where the molecules will line up such that their hydrophobic ends will face the outer side of the soap bubble surface, while the hydrophilic ends will face the inner side of the soap bubble surface.

  2. High pressure can also cause variations in the pitch length, for example see Keyes et al. (1973), Pollmann and Stegemeyer (1974); however for DLCPT/V applications, the pressure variations have negligible effects on the pitch of CLCs.

  3. Interestingly, experimental evidence of this was found in the late 1950s and early 1960s, where it was determined that the retina within the human eye had two different light-sensitive receptors called rods and cones, loosely named after the shape of the receptors. Rods, being more sensitive to light, are mostly responsible for twilight and night vision. Cones exist in three types, each type being sensitive to a different wavelength band within the visible spectrum, are responsible for day and color vision. Overall, the human retina contains about 6.5 million cones and 100 million rods. Their distribution, however, is not uniform. A small part of the retina called the fovea, for example, contains only cones. When looking at any scene, its center always focuses onto the fovea, which subtends an angle no larger than 4°. Outside of the fovea, there are both rods and cones, with rods outnumbering cones.

  4. http://www.geospatialsystems.com/wp-content/uploads/spectral-and-polarization-configuration-guide.pdf. Though descriptive of generic 3CCD color cameras, this figure specifically represents the Geospatial Systems, Inc (GSI) MS 3100/4100 Series 3-CCD cameras.

  5. See, for example, http://www.siliconimaging.com/RGB%20Bayer.htm.

Abbreviations

CCD:

Charge-coupled device

CIE:

Commission International de l’Éclairage

CLC:

Cholesteric liquid crystal

CNLC:

Chiral nematic liquid crystals

DPIT:

Digital particle image thermometry

DPIT/V:

Digital particle image thermometry/velocimetry

DPIV:

Digital particle image velocimetry

HWA:

Hot wire anemometry

LDA:

Laser-Doppler anemometry

MTV&T:

Molecular tagging velocimetry and thermometry

LIF:

Laser-induced fluorescence

NTSC:

National Television Systems Committee

POD:

Proper orthogonal decomposition

RTD:

Resistance temperature detector

TLC:

Thermochromic liquid crystals

PAL:

Phase altering line

SECAM:

Séquentiel couleur à mémoire

NTSC:

National Television Standards Committee

HSI:

Hue, saturation, intensity

RGB:

Red, green, blue color space

References

  • Abu Talib AR, Neely AJ, Ireland PT, Mullender AJ (2004) A novel liquid crystal image processing technique using multiple gas temperature steps to determine heat transfer coefficient distribution and adiabatic wall temperature. ASME J Turbomach 126:587–596

    Article  Google Scholar 

  • Adams JE, Haas W, Wysocki J (1969) Optical properties of certain cholesteric liquid-crystal films. J Chem Phys 50(6):2458–2464

    Article  Google Scholar 

  • Adrian RJ (1983) Laser velocimetry. In: Goldstein RJ (ed) Fluid mechanics measurements. Hemisphere, Washington, pp 155–244

    Google Scholar 

  • Adrian RJ (1984) Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry. Appl Opt 23:1690–1691

    Google Scholar 

  • Adrian RJ (1988) Statistical properties of particle image velocimetry measurements in turbulent flow. In: Adrian RJ, Durao DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Laser anemometry in fluid mechanics. Springer, New York, pp 115–129

    Google Scholar 

  • Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304A

    Google Scholar 

  • Aeschliman DP, Croll RH, Kuntz DW (1995) Shear-stress-sensitive liquid crystals for hypersonic boundary-layer transition detection. J Spacecr Rockets 32:749–757

    Article  Google Scholar 

  • Ahn J, Jung IS, Lee JS (2003) Film cooling from two rows of holes with opposite orientation angles- injectant behavior and adiabatic film cooling effectiveness. Int J Heat Fluid Flow 24:91–99

    Article  Google Scholar 

  • Ahn J, Choi H, Lee JS (2005) Large eddy simulation of flow and heat transfer in a channel roughened by square or semicircle ribs. ASME J Turbomach 127:263–269

    Article  Google Scholar 

  • Ai D, Ding P-P, Chen P-H (2001) The selection criterion of injection temperature pair for transient liquid crystal thermography on film cooling measurements. Int J Heat Mass Transf 44:1389–1399

    Article  MATH  Google Scholar 

  • Akino N, Kunugi T, Ichimiya K, Mitsushiro K, Ueda M (1986a) Improved liquid crystal thermometry excluding human color sensation, parts I and II, Concept and calibration. In: Kim JH, Moffat RJ (eds) Pressure and temperature measurements, vol 58. ASME HTD, Anaheim, pp 57–68

    Google Scholar 

  • Akino N, Kunugi T, Ichimiya K, Mitsushiro K, Ueda M (1986b) Improved liquid crystal thermometry excluding human color sensation, part II, applications to the determination of wall temperature distributions. In: Kim JH, Moffat RJ (eds) Pressure and temperature measurements, vol 58. ASME HTD, Anaheim, pp 63–68

    Google Scholar 

  • Akino N, Kunugi T, Ichimiya K, Mitsushiro K, Ueda M (1989) Improved liquid-crystal thermometry excluding human color sensation. Trans ASME J Heat Transf 111:558–565

    Google Scholar 

  • Akino N, Kunugi T, Ichimiya K, Ueda M, Kurosawa A (1987) Liquid crystal thermometry based on automatic color evaluation and applications to measure turbulent heat transfer. In: Hirata M, Kasagi N (eds) Second international symposium on transport phenomena in turbulent flows, Tokyo, Japan, pp 627–640

  • Anderson MR, Baughn JW (2005a) Liquid-crystal thermometry: illumination spectral effects. Part 1—experiments. J Heat Transf 127:581–587

    Article  Google Scholar 

  • Anderson MR, Baughn JW (2005b) Liquid-crystal thermometry: illumination spectral effects. Part 2—theory. J Heat Transf 127:588–596

    Article  Google Scholar 

  • Ardasheva MM, Ryzhkova MV (1978) The use of liquid crystals in an aerodynamic heating test. Fluid Mech Sov Res 6:128–136

    Google Scholar 

  • Arjocu SC, Liburdy JA (2000) Identification of dominant heat transfer modes associated with the impingement of an elliptical jet array. ASME J Heat Transf 122:240–247

    Article  Google Scholar 

  • Ashforth-Frost S, Jambunathan K (1996a) Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int Comm Heat Mass Transf 23:155–162

    Article  Google Scholar 

  • Ashforth-Frost S, Jambunathan K (1996b) Numerical prediction of semi-confined jet impingement and comparison with experimental data. Int J Numer Methods Fluids 23:295–306

    Article  Google Scholar 

  • Ashforth-Frost S, Jambunathan K, Whitney CF, Ball SJ (1997) Heat transfer from a flat plate to a turbulent axisymmetric impinging jet. Proc Inst Mech Eng 211:167–172

    Article  Google Scholar 

  • Auton TR, Hunt JCE, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241–257

    Article  MATH  MathSciNet  Google Scholar 

  • Azad GS, Han J-C, Boyle RJ (2000a) Heat transfer and flow on the squealer tip of a gas turbine blade. J Turbomach 122:725–732

    Article  Google Scholar 

  • Azad GS, Huang YH, Han JC (2000b) Impingement heat transfer on dimpled surfaces using a transient liquid crystal technique. J Thermophys Heat Transf 14:186–193

    Article  Google Scholar 

  • Babinsky H, Edwards JA (1996) Automatic liquid crystal thermography for transient heat transfer measurements in hypersonic flow. Exp Fluids 21(4):227–236

    Article  Google Scholar 

  • Barlow DN, Kim YW, Florschuetz LW (1997) Transient liquid crystal technique for convective heat transfer on rough surfaces. J Turbomach 119:14–22

    Google Scholar 

  • Baughn JW (1995) Liquid crystal methods for studying turbulent heat transfer. Int J Heat Fluid Flow 16:365–375

    Article  Google Scholar 

  • Baughn JW, Anderson MR, Mayhew JE, Wolf JD (1999) Hysteresis of thermochromic liquid crystal temperature measurement based on hue. Trans ASME J Heat Transf 121:1067–1072

    Article  Google Scholar 

  • Baughn JW, Ireland PT, Jones TV, Saniei N (1989) A comparison of the transient and heated-coating methods for the measurement of local heat transfer coefficients on a pin fin. ASME J Heat Transf 111:877–881

    Article  Google Scholar 

  • Behle M, Schulz K, Leiner W, Fiebig M (1996) Color-based image processing to measure local temperature distribution by wide-band liquid crystal thermography. Appl Sci Res 56:113–143

    Article  Google Scholar 

  • Berger-Schunn (1994) Practical Color Measurement: A primer for the beginner, a reminder for the expert. In: Goodman JW (ed) Wiley, New York

  • Berkooz G, Elezgaray J, Holmes P, Lumley J, Poje AC (1994) The proper orthogonal decomposition, wavelets and modal approaches to the dynamics of coherent structures in turbulence. Appl Sci Res 53:321–338

    Article  MATH  Google Scholar 

  • Berns RS (2000) Billmeyer and Saltzman’s principles of color technology. Wiley, New York

    Google Scholar 

  • Boree J (2003) Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp Fluids 35(2):188–192

    Article  Google Scholar 

  • Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64:775–816

    Article  Google Scholar 

  • Bühler L, Erhard P, Günther G, Müller U, Zimmermann G (1987) Natural convection in vertical gaps heated at the lower side—an experimental an numerical study. In: Bau HM, Bertram LA, Lorpela SA (eds) Bifurcation phenomena in thermal processes and convections. ASME, HTD-vol 94/AMD-vol 89, pp 67–74

  • Buttsworth DR, Elston SJ, Jones TV (1998) Direct full surface skin friction measurement using nematic liquid crystal techniques. J Turbomach 120:847–853

    Article  Google Scholar 

  • Buttsworth DR, Elston SJ, Jones TV (2000) Skin friction measurements on reflective surfaces using nematic liquid crystal. Exp Fluids 28(1):64–73

    Article  Google Scholar 

  • Camci C, Kim K (1992) A new hue capturing techniques for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. ASME J Turbomach 114:765–775

    Article  Google Scholar 

  • Camci C, Kim K, Hippensteele SA (1992) A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. J Turbomach 114:765–775

    Article  Google Scholar 

  • Camci C, Kim K, Hippensteele SA, Poinsatte PE (1993) Evaluation of a hue capturing based transient liquid-crystal method for high resolution mapping of convective heat-transfer on curved surfaces. J Heat Transf 115:311–318

    Article  Google Scholar 

  • Cavallero D, Tanda G (2002) An experimental investigation of forced convection heat transfer in channels with rib turbulators by means of liquid crystal thermography. Exp Therm Fluid Sci 26:115–121

    Article  Google Scholar 

  • Chambers AC, Gillespie DRH, Ireland PT, Dailey GM (2003) A novel transient liquid crystal technique to determine heat transfer coefficient distributions and adiabatic wall temperature in a three-temperature problem. J Turbomach 125:538–546

    Article  Google Scholar 

  • Chan TL (2001) Evaluation of viewing-angle effect on determination of local heat transfer coefficients on a curved surface using transient and heat-coating liquid-crystal methods. Exp Fluids 31(4):447–456

    Article  Google Scholar 

  • Chan TL, Ashforth-Frost S, Jambunathan K (2001) Calibrating for viewing angle effect during heat transfer measurements on a curved surface. Int J Heat Mass Transf 44:2209–2223

    Article  Google Scholar 

  • Chaudhari AM, Woudenberg TM, Albin M, Goodson KE (1998) Transient liquid crystal thermography of microfabricated PCR vessel arrays. J Microelectromech Syst 7:345–355

    Article  Google Scholar 

  • Chen P-H, Ding P-P, Ai D (2001) An improved data reduction method for transient liquid crystal thermography on film cooling measurements. Int J Heat Mass Transf 44:1379–1387

    Article  Google Scholar 

  • Chyu MK, Ding H, Downs JP, Soechting FO (1998) Determination of local heat transfer coefficient based on bulk mean temperature using a transient liquid crystals technique. Exp Therm Fluid Sci 18:142–149

    Article  Google Scholar 

  • Chyu MK, Yu Y, Ding H (1999) Heat transfer enhancement in rectangular channels with concavities. J Enhanc Heat Trans 6:429–439

    Google Scholar 

  • Ciofalo M, Signorino M, Simiano M (2003) Tomographic particle-image velocimetry and thermometry in Rayleigh–Benard convection using suspended thermochromic liquid crystals and digital image processing. Exp Fluids 34(2):156–172

    Google Scholar 

  • Collings PJ (2002) Liquid crystals: nature’s delicate phase of matter. Princeton University Press, Princeton

    Google Scholar 

  • Cooper TE, Field RJ, Meyer JF (1975) Liquid crystal thermography and its application to the study of convective heat transfer. ASME J Heat Transf 97:442–450

    Google Scholar 

  • Critoph RE, Holland MK, Fisher M (1999) Comparison of steady state and transient methods for measurement of local heat transfer in plate fin-tube heat exchangers using liquid crystal thermography with radiant heating. Int J Heat Mass Transf 42:1–12

    Article  Google Scholar 

  • Csendes A, Szekely V, Rencz M (1996) Thermal mapping with liquid crystal method. Microelectron Eng 31:281–290

    Article  Google Scholar 

  • Dabiri D (1992) The effect of forced boundary conditions on the flow field of a square convection cell. PhD thesis, University of California, San Diego

  • Dabiri D, Gharib M (1996) The effects of forced boundary conditions on flow within a cubic cavity using digital particle image thermometry and velocimetry (DPITV). Exp Therm Fluid Sci 13:349–363

    Article  Google Scholar 

  • Dabiri D, Gharib M (1991a) Digital particle image thermometry: the method and implementation. Exp Fluids 11(2–3):77–86

    Google Scholar 

  • Dabiri D, Gharib M (1991b) Digital particle image thermometry and its application to a heated vortex-ring. In: Applications of laser anemometry to fluid mechanics. Fifth international symposium on application of laser techniques to fluid mechanics, Lisbon, Portugal, July 9–12, pp 81–101

  • Dabiri D, Gharib M (1995) Digital particle image thermometry and velocimetry. In: Flow visualization VII, proceedings of the seventh international symposium on flow visualization, 11–14 September, pp 558–563

  • Dano BPE, Liburdy JA, Kanokjaruvijit K (2005) Flow characteristics and heat transfer performances of a semiconfined impinging array of jets-effect of nozzle geometry. Int J Heat Mass Transf 48:691–701

    Article  Google Scholar 

  • Das MK, Tariq A, Panigrahi PK, Muralidhar K (2005) Estimation of convective heat transfer coefficient from transient liquid crystal data using an inverse technique. Inverse Probl Sci Eng 13:133–155

    Article  MATH  Google Scholar 

  • de Vries (1951) Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr 4:219–226

  • Delville J, Bonnet JP (2001) Review of coherent structures in turbulent free shear flows and their possible influence on computational methods. Flow Turbul Combust 66:333–353

    Article  MATH  Google Scholar 

  • Demus D, Chemie S (1990) Types and classification of liquid crystals. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 1. World Scientific, New Jersey, pp 1–36

    Google Scholar 

  • Drost U, Bolcs A (1999) Investigation of detailed film cooling effectiveness and heat transfer distributions on a gas turbine airfoil. J Turbomach 121:233–242

    Google Scholar 

  • Dukle NM, Hollingsworth DK (1996a) Liquid crystal images of the transition from jet impingement convection to nucleate boiling part I: Monotonic distribution of the convection coefficient. Exp Therm Fluid Sci 12:274–287

    Article  Google Scholar 

  • Dukle NM, Hollingsworth DK (1996b) Liquid crystal images of the transition from jet impingement convection to nucleate boiling part II: nonmonotonic distribution of the convection coefficient. Exp Therm Fluid Sci 12:288–297

    Article  Google Scholar 

  • Du H, Ekkad S, Han JC (1997) Effect of unsteady wake with trailing edge coolant ejection on detailed heat transfer coefficient distributions for a gas turbine blade. J Heat Transf 119:242–248

    Article  Google Scholar 

  • Du H, Ekkad S, Han JC (1999) Effect of unsteady wake with trailing edge coolant ejection on film cooling performance for a gas turbine blade. J Turbomach 121:448–455

    Google Scholar 

  • Ekkad SV, Han J-C (1996) Heat transfer inside and downstream of cavities using transient liquid crystal method. J Thermophys Heat Transf 10:511–516

    Article  Google Scholar 

  • Ekkad SV, Han J-C (1999) Heat transfer distributions on a cylinder with simulated thermal barrier coating spallation. J Thermophys Heat Transf 13:76–81

    Article  Google Scholar 

  • Ekkad SV, Han J-C (2000a) A transient liquid crystal thermography technique for gas turbine heat transfer measurements. Meas Sci Technol 11:957–968

    Article  Google Scholar 

  • Ekkad SV, Han J-C (2000b) Film cooling measurements on cylindrical models with simulated thermal barrier coating spallation. J Thermophys Heat Transf 14:194–200

    Article  Google Scholar 

  • Ekkad SV, Han JC, Du H (1998) Detailed film cooling measurements on a cylindrical leading edge model: Effect of free-stream turbulence and coolant density. J Turbomach 120:799–807

    Article  Google Scholar 

  • Ekkad SV, Huang YZ, Han JC (1999) Impingement heat transfer on a target plate with film cooling holes. Thermophys Heat Transf 13:522–528

    Article  Google Scholar 

  • Ekkad SV, Pamela G, Acharya S (2000) Influence of crossflow-induced swirl and impingement on heat transfer in an internal coolant passage of a turbine airfoil. J Heat Transf 122:587–597

    Article  Google Scholar 

  • Ekkad SV, Zapata D, Han C (1997) Film effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method. J Turbomach 199:587–593

    Google Scholar 

  • El-Gabry LA, Kaminski DA (2005) Experimental investigation of local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets. ASME J Turbomach 127:532–544

    Article  Google Scholar 

  • Elser W, Ennulat RD (1976) Selective reflection of cholesteric liquid crystals. In: Brown G (ed) Advances in liquid crystals, vol 2. Academic Press, New York, pp 73–172

    Google Scholar 

  • Engels G, Peck RE, Kim Y (2001) Investigation of a quasi-steady liquid crystal technique for film cooling heat transfer measurements. Exp Heat Transf 14:181–198

    Article  Google Scholar 

  • Facchini B, Innocenti L, Surace M (2006) Design criteria for ribbed channels—experimental investigation and theoretical analysis. Int J Heat Mass Transf 40:3130–3141

    Article  Google Scholar 

  • Facchini B, Surace M (2006) Impingement cooling for modern combustors: experimental analysis of heat transfer and effectiveness. Exp Fluids 40(4):601–611

    Article  Google Scholar 

  • Farina DJ, Hacker JM, Moffat RJ, Eaton JK (1994) Illuminant invariant calibration of thermochromic liquid crystal. Exp Therm Fluid Sci 9:1–12

    Article  Google Scholar 

  • Fergason JL (1964) Liquid Crystals. Scientific American 211:77–85

    Google Scholar 

  • Fergason JL (1966) Cholesteric structure—I optical properties. Molec Cryst 1:293–307

    Article  Google Scholar 

  • Fergason JL (1968) Liquid crystals in nondestructive testing. Appl Opt 7:1729–1737

    Article  Google Scholar 

  • Foley JD, van Dam A, Feiner SK, Hughes JF (1996) Computer graphics: principles and practice. In: Gordon PS (ed) Addison-Wesley, New York

  • Freidel G (1922) Les etats mesomorphes de la matiere. Annales de Physique 18:273–474

    Google Scholar 

  • Frey H (1988) Digitale bildverarbeitung in farbräumen. PhD thesis, Technical University of Munich, Munich, Germany

  • Fujisawa N, Aoyama A, Kosaka S (2003) Measurement of shear-stress distribution over a surface by liquid-crystal coating. Meas Sci Technol 14:1655–1661

    Article  Google Scholar 

  • Fujisawa N, Adrian RJ (1999) Three-dimensional temperature measurement in turbulent thermal convection by extended range scanning liquid crystal thermometry. J Vis 1:355–364

    Google Scholar 

  • Fujisawa N, Funatani S (2000) Simultaneous measurement of temperature and velocity in a turbulent thermal convection by the extended range scanning liquid crystal visualization technique. Exp Fluids 29:s158–s165

    Article  Google Scholar 

  • Fujisawa N, Hashizume Y (2001) An uncertainty analysis of temperature and velocity measured by a liquid crystal visualization technique. Meas Sci Technol 12:1235–1242

    Google Scholar 

  • Fujisawa N, Nakajima T, Katoh N, Hashizume Y (2004) An uncertainty analysis of temperature and velocity measured by stereo liquid-crystal thermometry and velocimetry. Meas Sci Technol 15:799–806

    Article  Google Scholar 

  • Fujisawa N, Funatani S, Katoh N (2005) Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh–Benard convection. Exp Fluids 38(3):291–303

    Article  Google Scholar 

  • Fujisawa N, Watanabe M, Hashizume Y (2008) Visualization of turbulence structure in unsteady non-penetrative thermal convection using liquid crystal thermometry and stereo velocimetry. J Vis 11:173–180

    Google Scholar 

  • Funatani S, Fujisawa N (2002) Simultaneous measurement of temperature and three velocity components in planar cross section by liquid-crystal thermometry combined with stereoscopic particle image velocimetry. Meas Sci Technol 13:1197–1205

    Article  Google Scholar 

  • Funatani S, Fujisawa N, Matsuura T (2000) Multi-point calibration technique of liquid crystal thermometry and its application to three-dimensional temperature measurement of thermal convection. J Flow Vis Image Process 7:353–366

    Google Scholar 

  • Gao X, Sundén B (2001) Heat transfer and pressure drop measurements in rib-roughened rectangular ducts. Exp Therm Fluid Sci 24:25–34

    Article  Google Scholar 

  • Geers LFG, Hanjalic K, Tummers MJ (2006) Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J Fluid Mech 546:255–284

    Article  MATH  Google Scholar 

  • Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, New York

    Google Scholar 

  • Gharib M, Dabiri D (2000) Digital particle image velocimetry. In: Smits AJ, Lim TT (eds) Flow visualization, techniques and examples. Imperial College Press, Singapore

    Google Scholar 

  • Gleeson HF, Coles HJ (1989) Optical properties of chiral nematic liquid crystals. Mol Cryst Liquid Cryst 170:9–34

    Article  Google Scholar 

  • Grant I (1994) Selected papers on particle image velocimetry In: Grant I (ed) SPIE milestone series, vol MS 99. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  • Grassi W, Testi D, Della Vista D, Torelli G (2007) Calibration of a sheet of thermosensitive liquid crystals viewed orthogonally. Measurements 40:898–903

    Google Scholar 

  • Grewal GS, Bharara M, Cobb JE, Dubey VN, Claremont DJ (2006) A novel approach to thermochromic liquid crystal calibration using neural networks. Meas Sci Technol 17:1918–1924

    Article  Google Scholar 

  • Guild J (1931) The colorimetric properties of the spectrum. Philos Trans R Soc Lond Ser A 230:149–187

    Article  Google Scholar 

  • Günther A, Rudolf von Rohr Ph (2002a) Influence of the optical configuration on temperature measurements with fluid-dispersed TLCs. Exp Fluids 33(5):920–930

    Google Scholar 

  • Günther A, Rudolf von Rohr Ph (2002b) Structure of the temperature field in a flow over heated waves. Exp Fluids 33(6):920–930

    Google Scholar 

  • Hacker JM, Eaton JK (1996) Measurements of heat transfer in a separated and reattaching flow with spatially varying thermal boundary conditions. Int J Heat Fluid Flow 18:131–141

    Article  Google Scholar 

  • Hay JL, Hollingsworth DK (1996) A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals. Exp Therm Fluid Sci 12:1–12

    Article  Google Scholar 

  • Hay JL, Hollingsworth DK (1998) Calibration of micro-encapsulated liquid crystals using hue angle and a dimensionless temperature. Exp Therm Fluid Sci 18:251–257

    Article  Google Scholar 

  • Hiller WJ, Kowalewski TA (1986) Simultaneous measurement of temperature and velocity fields in thermal convective flows. In: Claude Veret (ed) Flow visualization IV, proceedings of the 4th international symposium on flow visualization, 26–29 August, Paris, France. Hemisphere, New York, pp 617–622

  • Hiller WJ, Koch ST, Kowalewski TA (1989a) Three-dimensional structures in laminar natural convection in a cubic enclosure. Exp Therm Fluid Sci 2:34–44

    Article  Google Scholar 

  • Hiller WJ, Koch ST, Kowalewski TA, De Vahl Davis G, Behnia M (1989b) Experimental and numerical investigation of natural convection in a cube with two heated side walls. In: Moffatt HK, Tsinober A (eds) Topological fluid mechanics, proceedings of the IUTAM symposium, 13–18 August. Cambridge University Press, Cambridge, pp 717–727

    Google Scholar 

  • Hiller WJ, Koch ST, Kowalewski TA, Range K (1991) Visualization of 3-D convection—comparison with numerical results. In: Esp. da Revista Brasileira de Ciencias Mecanicas (ed) 11th ABCM mechanical engineering conference, 11–13 December, Sao Paulo, Brazil, vol 2, pp 21–24

  • Hiller WJ, Koch ST, Kowalewski TA, Stella F (1993) Onset of natural convection in a cube. Int J Heat Mass Transf 36:3251–3263

    Article  Google Scholar 

  • Hjelmfelt AT, Mockros LF (1966) Motion of discrete particles in a turbulent fluid. Appl Sci Res 16:149–161

    Article  Google Scholar 

  • Hoffs A, Bolcs A, Harasgama SP (1997) Transient heat transfer experiments in a linear cascade via an insertion mechanism using the liquid crystal technique. J Turbomach 199:9–13

    Google Scholar 

  • Hollingsworth DK, Boehman AL, Smith EG, Moffat RJ (1989) Measurement of temperature and heat transfer coefficient distributions in a complex flow using liquid crystal thermography and true-color image processing. In: ASME collected papers in heat transfer, HTD-vol 123, Winter annual meeting of ASME, San Francisco, 10–15 December. ASME, New York, pp 35–42

  • Holmes BJ, Obara CJ (1987) Advances in flow visualization using liquid crystal coatings. SAE technical paper 871017

  • Hu H, Koochesfahani MM (2006) Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder. Meas Sci Technol 17:1269–1281

    Article  Google Scholar 

  • Hu SH, Richards CD, Richards RF (1994) Thermography of atomized fropelts in flight using thermochromic liquid crystals. In: 8th Annual ICASS conference of liquid atomization and spray systems, Belleve WA

  • Huang YZ, Ekkad SV, Han JC (1998) Detailed heat transfer distributions under an array of orthogonal impinging jets. J Thermophys Heat Transf 12:73–79

    Article  Google Scholar 

  • Hwang J-J, Cheng C-S (1999) Augmented heat transfer in a triangular duct by using multiple swirling jets. J Heat Trans 121:683–690

    Article  Google Scholar 

  • Hwang J-J, Chang B-Y (2000) Effect of outflow orientation on heat transfer and pressure drop in a triangular duct with an array of tangential jets. J Heat Trans 122:669–678

    Article  Google Scholar 

  • Hwang J-J, Cheng C-S (2001) Impingement cooling in triangular ducts using an array of side-entry wall jets. Int Heat Mass Transf 44:1053–1063

    Article  Google Scholar 

  • Hwang J-J, Lui C-C (1999) Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays. Int J Heat Mass Transf 42:4005–4016

    Article  MATH  Google Scholar 

  • Iles A, Fortt R, de Mello AJ (2005) Thermal optimisation of the Reimer–Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. Lab Chip 5:540–544

    Article  Google Scholar 

  • Ireland PT, Jones TV (1987) The response time of a surface thermometer employing encapsulated thermochromic liquid crystals. J Phys E Sci Instrum 20:1195–1199

    Article  Google Scholar 

  • Ireland PT, Jones TV (2000) Liquid crystal measurements of heat transfer and surface shear stress. Meas Sci Tech 11:969–986

    Article  Google Scholar 

  • Ireland PT, Neely AJ, Gillespie DRH, Robertson AJ (1999) Turbulent heat transfer measurements using liquid crystals. Int J Heat Fluid Flow 20:355–367

    Article  Google Scholar 

  • Jain AK (1989) Fundamentals of digital image processing. In: Kailath T (ed) Prentice-Hall, New Jersey

  • Javitt NB (2002) Cholesterol, hydroxycholesterols, and bile acids. Biochem Biophys Res Commun 292(5):1147–1153

    Article  Google Scholar 

  • Jeng T-M, Wang M-P, Hwang G-J, Hung Y-H (2004) A new semi-empirical model for predicting heat transfer characteristics in porous channels. Exp Therm Fluid Sci 29:9–21

    Article  Google Scholar 

  • Jeschke P, Biertümpfel R, Beer H (2000) Liquid-crystal thermography for heat-transfer measurements in the presence of longitudinal vortices in a natural convection flow. Meas Sci Technol 11:447–453

    Article  Google Scholar 

  • Jung IS, Lee JS (2000) Effects of orientation angles on film cooling over a flat plate—boundary layer temperature distributions and adiabatic film cooling effectiveness. ASME J Turbomach 122:153–160

    Article  Google Scholar 

  • Kahn FJ (1982) The molecular physics of liquid-crystal devices. Phys Today 35(5):66–74

    Article  Google Scholar 

  • Kaiser E (2001) Measurement and visualization of impingement cooling in narrow channels. Exp Fluids 30(6):603–612

    Google Scholar 

  • Kasagi N, Hirata M, Kumada M (1981) Studies of full-converge film cooling: part 1, cooling effectiveness of thermally conductive wall. ASME paper no. 81-GT-37

  • Kassab AJ, Divo E, Kapat JS (2001) Multi-dimensional heat flux reconstruction using narrow-band thermochromic liquid crystal thermography. Inverse Probl Eng 9:537–559

    Article  Google Scholar 

  • Kawamoto H (2002) The history of liquid-crystal displays. Proc IEEE 90(4):460–500

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Article  Google Scholar 

  • Kenning BDR, Yan YY (1996) Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography. Int J Heat Mass Transf 39:3117–3137

    Article  Google Scholar 

  • Kenning DBR, Kono T, Wienecke M (2001) Investigation of boiling heat transfer by liquid crystal thermography. Exp Therm Fluid Sci 25:219–229

    Article  Google Scholar 

  • Keyes PH, Weston HT, Daniels WB (1973) Tricritical behavior in a liquid-crystal system. Phys Rev Lett 31:628–630

    Article  Google Scholar 

  • Kim K, Camci C (1995a) Fluid-dynamic and convective heat-transfer in impinging jets through implementation of a high-resolution liquid-crystal technique. 1 Flow and heat-transfer experiments. Int J Turbo Jet Eng 12(1):1–12

    Google Scholar 

  • Kim K, Camci C (1995b) Fluid-dynamic and convective heat-transfer in impinging jets through implementation of a high-resolution liquid-crystal technique. 2. Navier-stokes computation of impulsively starting heat-transfer experiments. Int J Turbo Jet Eng 12(1):13–19

    Google Scholar 

  • Kim T, Hodson HP, Lu TJ (2005) Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material. Int J Heat Mass Transf 48:4243–4264

    Article  Google Scholar 

  • Kimura I, Hyodo T, Ozawa M (1998) Temperature and velocity measurement of a 3D thermal flow field using thermo-sensitive liquid crystals. J Vis 1:145–152

    Google Scholar 

  • Kimura I, Takamori T, Ozawa M, Takenaka N, Sakaguchi T (1989a) Simultaneous measurement of flow and temperature fields based on color image information. In: Flow visualization V, proceedings of the fifth international symposium on flow visualization, August 21–25, Prague, Czechoslovakia, pp 29–34

  • Kimura I, Takamori T, Ozawa M, Takenaka N, Manabe Y (1989b) Quantitative thermal flow visualization using color image processing (application to a natural convection visualized by liquid crystals). In: Khalighi B, Brown MJ, Freitas CJ (eds) Flow visualization, vol 85. ASME-FED, pp 261–269

  • Kingsley-Rowe JR, Lock GD, Owen JM (2005) Transient heat transfer measurements using thermochromic liquid crystal—lateral-conduction error. Int J Heat Fluid Flow 26:256–263

    Article  Google Scholar 

  • Kitamura K, Kimura F (1995) Heat transfer and fluid flow of natural convection adjacent to upward-facing horizontal plates. Int J Heat Mass Transf 38:3149–3159

    Article  Google Scholar 

  • Klein EJ (1968a) Liquid crystals in aerodynamic testing. Aeronaut Astronaut 6(7):70–73

    Google Scholar 

  • Klein EJ (1968b) Application of liquid crystals to boundary-layer flow visualization. AIAA paper, 68-376

  • Klein EJ, Margozzi AP (1970) Apparatus for the calibration of shear-sensitive liquid crystals. Rev Sci Instrum 41:238–239

    Article  Google Scholar 

  • Kobayashi T, Saga T, Foeg-Hee D (1998) Time response characteristics of microcapsulated liquid-crystal particles. Heat Transf Jpn Res 27:298–390

    Google Scholar 

  • Kodzwa PM, Eaton JK (2007) Angular effects on thermochromic liquid crystal thermography. Exp Fluids 43(6):929–937

    Article  Google Scholar 

  • Kodzwa PM, Elkins CJ, Mukerji D, Eaton J (2007) Thermochromic liquid crystal temperature measurements through a borescope imaging system. Exp Fluids 43(4):475–486

    Article  Google Scholar 

  • Kowalewski TA (2002) Particle image velocimetry and thermometry for two-phase flow problems. Ann NY Acad Sci 972:213–222

    Google Scholar 

  • Kowalewski TA (1999) Particle image velocimetry and thermometry using liquid crystals. In: 8me colloque nationale de visualisation et de traitment d’images en mecanique des fluides, 1–4 June, ENSICA, Toulouse, France, pp 33–48

  • Kowalewski TA (2001) Particle image velocimetry and thermometry using liquid crystals tracers. In: Kompemhans J (ed) PIV’01 4th international symposium on particle image velocimetry, DLR, Mitteilung, Göttingen, pp 1134.1–1134.10

  • Kowalewski TA, Rebow M (1999) Freezing of water in a differentially heated cubic cavity. Int J Comp Fluid Dyn 11:193–210

    Article  MATH  Google Scholar 

  • Kowalewski TA, Ligrani P, Dreizler A, Schulz C, Fey U, Egami Y (2007) Temperature and heat flux. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487–561

    Google Scholar 

  • Kukreja RT, Lau SC (1998) Distributions of local heat transfer coefficient on surfaces with solid and perforated ribs. Enhanc Heat Transf 5:9–21

    Google Scholar 

  • Lakshminarasimhan MS, Lu Q, Chin Y, Hollingsworth DK, Witte LC (2005) Fully developed nucleate boiling in narrow vertical channels. J Heat Transf 127:941–944

    Article  Google Scholar 

  • Lee J, Lee S-J (1999) Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Exp Heat Transf 12:137–156

    Article  Google Scholar 

  • Lee J, Lee S-J (2000) The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Int J Heat Mass Transf 43:555–575

    Article  MATH  Google Scholar 

  • Lee DH, Chung JH, Won SY, Kim YT, Boo KS (2000) A new liquid crystal color calibration technique using neural networks and median filtering. KSME Int 14(1):113–120

    Google Scholar 

  • Lee JS, Jung HG, Kang SB (2002) Effect of embedded vortices on film cooling performance on a flat plate. Exp Therm Fluid Sci 26:197–204

    Article  Google Scholar 

  • Lehmann O (1889) Über fliessende krystalle. Z Phys Chem 4:462–472

    Google Scholar 

  • Lemburg R (1971) Liquid crystal for the visualization of unsteady boundary layers. In: Third Canadian congress of applied mechanics, Calgary, pp 525–526

  • Li H, Xing C, Braun MJ (2007) Natural convection in a bottom-heated top-cooled cubic cavity with a baffle at the median height: experiment and model validation. Exp Fluids 43(9):895–905

    Google Scholar 

  • Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ling JPC, Ireland PT, Turner L (2004) A technique for processing transient heat transfer, liquid crystal experiments in the presence of lateral conduction. J Turbomach 126:247–258

    Article  Google Scholar 

  • Liou T-M, Chen C-C, Tsai T-W (2000a) Heat transfer and fluid flow in a square duct with 12 different shaped vortex generators. ASME J Heat Transf 122:327–335

    Article  Google Scholar 

  • Liou T-M, Chen C-C, Tzeng Y-Y, Tsai T-W (2000b) Nonintrusive measurements of near-wall fluid flow and surface heat transfer in a serpentine passage. Int J Heat Mass Transf 43:3233–3244

    Article  Google Scholar 

  • Liou T-M, Chen C-C, Chen M-Y (2001) TLCT and LDV measurements of heat transfer and fluid flow in a rotating sharp turning duct. Int J Heat Mass Transf 44:1777–1787

    Article  Google Scholar 

  • Liou T-M, Chen M-Y, Wang Y-M (2003) Heat transfer, fluid flow, and pressure measurements inside a rotating two-pass duct with detached 90-deg ribs. ASME J Turbomach 125:565–574

    Article  Google Scholar 

  • Litster JD, Birgeneau RJ (1982) Phases and phase transition. Phys Today 35(5):26–33

    Article  Google Scholar 

  • Lock GD, Wilson M, Owen JM (2005a) Influence of fluid dynamics on heat transfer in a preswirl rotating-disk system. ASME J Eng Gas Turbine Power 127:791–797

    Article  Google Scholar 

  • Lock GD, Yan Y, Newton PJ, Wilson M, Owen JM (2005b) Heat transfer measurements using liquid crystals in a preswirl rotating-disk system. ASME J Eng Gas Turbine Power 127:375–382

    Article  Google Scholar 

  • Loebisch L (1872) Berichte der Deutschen Chemischen Gesellschaft 5:510–514

    Google Scholar 

  • Lourenco LM, Krothopalli A, Smith CA (1989) Particle image velocimetry. In: Gad-El-Hak M (ed) Advances in fluid mechanics measurements. Springer, Berlin, pp 128–199

  • Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New York

    MATH  Google Scholar 

  • Lutjen PM, Mishra D, Prasad V (2001) Three-dimensional visualization and measurement of temperature field using liquid crystal scanning thermography. J Heat Transf 123:1006–1014

    Article  Google Scholar 

  • Ma X, Karniadakis GE, Park H, Gharib M (2002) DPIV/T-driven convective heat transfer simulation. Int J Heat Mass Transf 45:3517–3527

    Article  MATH  Google Scholar 

  • Ma X, Karniadakis GE, Park H, Gharib M (2003) DPIV-driven flow simulation: a new computational paradigm. Proc R Soc Lond A 459:547–565

    MATH  MathSciNet  Google Scholar 

  • Maier A, Sheldrae TH, Wilcock D (2000a) Geometric parameters influencing flow in an axisymmetric IC engine inlet port assembly: part I—valve flow characteristics. J Fluid Eng 122:650–657

    Article  Google Scholar 

  • Maier A, Sheldrae TH, Wilcock D (2000b) Geometric parameters influencing flow in an axisymmetric IC engine inlet port assembly: Part II—parametric variation of valve geometry. J Fluid Eng 122:658–665

    Article  Google Scholar 

  • Makow DM (1980) Peak reflectance ad color gamut of superimposed left- and right-handed cholesteric liquid crystals. Appl Opt 19:1274–1277

    Article  Google Scholar 

  • Makow D (1991) Liquid crystals in decorative and visual arts. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 2. World Scientific, New Jersey, pp 121–156

    Google Scholar 

  • Makow DM, Sanders CL (1978) Additive colour properties and colour gamut of cholesteric liquid crystals. Nature 276(5683):48–50

    Article  Google Scholar 

  • Martinez-Botas RF, Lock GD, Jones TV (1995) Heat-transfer measurements in an annular cascade of transonic gas-turbine blades using the transient liquid-crystal technique. J Turbomach 117:425–431

    Google Scholar 

  • Mathieu J (1911) J Bull Soc Trans Min 34:13

    Google Scholar 

  • Matsuda H, Ikeda K, Nakata Y, Otomo F, Takeo S, Fukuyama Y (2000) A new thermochromic liquid crystal temperature identification technique using color space interpolations and its application to film cooling effectiveness measurements. J Flow Vis Image Process 7:103–121

    Google Scholar 

  • Maxey MR (1987) The motion of a small rigid sphere in a non-uniform flow. Phys Fluids 30:1579–1582

    Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:863–889

    Article  Google Scholar 

  • Maxwell JC (1855) Experiments on colour, perceived by the eye, with remarks on colour-blindness. T Roy Soc Edin 24(2):275–298

    MathSciNet  Google Scholar 

  • Maxwell JC (1965) Scientific papers of James Clerk Maxwell. In: Nevern WD (ed) The Scientific papers of James Clerk Maxwell, vol 1&2. Dover, New York

  • Mayhew JE, Baughn JW, Byerley AR (2003) The effect of freestream turbulence on film cooling adiabatic effectiveness. Int J Heat Fluid Flow 24:669–679

    Article  Google Scholar 

  • McDonnell DG (1987) Thermochromic cholesteric liquid crystals. In: Gray GW (ed) Thermotropic liquid crystals, vol 22. Wiley, London, pp 120–144

  • Mckeon BJ, Comte-Bellot G, Foss JF, Westerweeel J, Scarano F, Tropea C, Meyers JF, Lee JW, Cavone AA, Schodl R, Koochesfahani MM, Nocera DG, Andreopoulos Y, Dahm WJA, Mullin JA, Wallace JM, Vukoslavcevic PV, Morris SC, Pardyjak ER, Cuerva A (2007) Velocity, vorticity, and Mach number. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 215–471

    Google Scholar 

  • Mei R (1996) Velocity fidelity of flow tracer particles. Exp Fluids 22:1–13

    Article  Google Scholar 

  • Meinders ER, Van Der Meer TH, Hanjalic K (1998) Local convective heat transfer from an array of wall-mounted cubes. Int J Heat Mass Transf 41:335–346

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406–1416

    Article  Google Scholar 

  • Metzger DE, Bunker RS, Bosch G (1991) Transient liquid-crystal measurement of local heat-transfer on a rotating disk with jet impingement. J Turbomach 113:52–59

    Article  Google Scholar 

  • Mikhailov MD (2003) Evaluating convective heat transfer coefficients from a given set of data by using mathematica. Commun Numer Methods Eng 19:441–443

    Article  MATH  Google Scholar 

  • Mishra D, Lutjen PM, Chen QS, Prasad V (2000) Tomographic reconstruction of three-dimensional temperature field using liquid crystal scanning thermography. Exp Heat Transf 13(4):235–258

    Article  Google Scholar 

  • Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, New Jersey

    Google Scholar 

  • Mochizuki T, Nozaki T, Mori YH, Kaji N (1999) Heat transfer to liquid drops passing through an immiscible liquid medium between tilted parallel-plate electrodes. Int J Heat Mass Transf 42:311–3129

    Article  Google Scholar 

  • Moffat RJ (1990) Some experimental methods for heat transfer studies. Exp Therm Fluid Sci 3:14–32

    Article  Google Scholar 

  • Moon HK, O’Connell T, Sharma R (2003) Heat transfer enhancement using a convex-patterned surface. ASME J Turbomach 125:274–280

    Article  Google Scholar 

  • Muwanga R, Hassan I (2006a) Local heat transfer measurements in microchannels using liquid crystal thermography: methodology development and validation. ASME J Heat Transf 128:617–626

    Article  Google Scholar 

  • Muwanga R, Hassan I (2006b) Local heat transfer measurements on a curved microsurface using liquid crystal thermography. J Thermophys Heat Transf 20:884–894

    Article  Google Scholar 

  • Muwanga R, Hassan I (2007) A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography. J Heat Transf 129:977–987

    Article  Google Scholar 

  • Nakano T, Fujisawa N (2006) Wind tunnel testing of shear-stress measurement by liquid-crystal coating. J Vis 9:135–136

    Google Scholar 

  • Neely AJ, Ireland PT, Harper LR (1997) Extended surface convective cooling studies of engine components using the transient liquid crystal technique. Proc Inst Mech Eng 211:273–287

    Google Scholar 

  • Newton PJ, Lock GD, Krishnababu SK, Hodson HP, Dawes WN, Hannis J, Whitney C (2006) Heat transfer and aerodynamics of turbine blade tips in a linear cascade. ASME J Turbomach 128:300–309

    Article  Google Scholar 

  • Newton PJ, Yan Y, Stevens NE, Evatt ST, Lock GD, Owen JM (2003a) Transient heat transfer measurements using thermochromic liquid crystal. Part 1—an improved technique. Int J Heat Fluid Flow 24(1):14–22

    Article  Google Scholar 

  • Newton PJ, Yan Y, Stevens NE, Evatt ST, Lock GD, Owen JM (2003b) Transient heat transfer measurements using thermochromic liquid crystal. Part 2—experimental uncertainties. Int J Heat Fluid Flow 24(1):23–28

    Article  Google Scholar 

  • Noh J, Sung SW, Jeon MK, Kim SH, Lee LP, Woo SI (2005) In situ thermal diagnostics of the micro-PCR system using liquid crystals. Sens Actuators 122:196–202

    Article  Google Scholar 

  • Nozaki T, Mochizuki T, Kaji N, Mory YH (1995) Application of liquid-crystal thermometry to drop temperature measurements. Exp Fluids 18:137–144

    Article  Google Scholar 

  • O’Brien S, Zhong S (2001) Visualisation of flow separation with shear-sensitive liquid crystals. Aeronaut J 105:597–602

    Google Scholar 

  • Ochoa AD, Baughn JW, Byerley AR (2005) A new technique for dynamic heat transfer measurements and flow visualization using liquid crystal thermography. Int J Heat Fluid Flow 26:264–275

    Article  Google Scholar 

  • Ogden TR, Hendricks EW (1984) Liquid crystal thermography in water tunnels. Exp Fluids 2:65–66

    Article  Google Scholar 

  • Onbasioglu & Onbasioglu (2003) On enhancement of heat transfer with ribs. Appl Therm Eng 24:43–57

    Google Scholar 

  • Oseen CW (1933) The theory of liquid crystals. Trans Faraday Soc 29:883–900

    Article  Google Scholar 

  • Owen JM, Newton PJ, Lock GD (2003) Transient heat transfer measurements using thermochromic liquid crystal. Part 1: an improved technique. Int J Heat Fluid Flow 24(1):14–22

    Article  Google Scholar 

  • Ozawa M, Mϋller U, Kimura I, Takamori T (1992) Flow and temperature measurement of natural convection in a Hele-Shaw cell using a thermo-sensitive liquid-crystal tracer. Exp Fluids 12:213–222

    Article  Google Scholar 

  • Park HG (1998) A study of heat transport processes in the wake of a stationary and oscillating circular cylinder using digital particle image velocimetry/thermometry. PhD thesis, California Institute of Technology, Pasadena, CA, USA

  • Park HG, Gharib M (2001) Experimental study of heat convection from stationary and oscillating circular cylinder in cross flow. J Heat Transf 123:51–62

    Article  Google Scholar 

  • Park HG, Dabiri D, Gharib M (2001) Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder. Exp Fluids 30:327–338

    Article  Google Scholar 

  • Parsley M (1991) The Hallcrest handbook of thermochromic liquid crystal technology. Hallcrest, Glenview

  • Pehl M, Werner F, Degado A (2000) First visualization of temperature fields in liquids at high pressure using thermochromic liquid crystals. Exp Fluids 29:302–304

    Article  Google Scholar 

  • Pershan PS (1982) Lyotropic liquid crystal. Phys Today 35(5):34–39

    Article  Google Scholar 

  • Platzer K-H, Hirsch C, Metzger DE, Wittig S (1992) Computer-based areal surface temperature and local heat transfer measurements with thermochromic liquid crystals (TLC). Exp Fluids 13:26–32

    Article  Google Scholar 

  • Pohl L, Finkenzeller U (1990) Physical properties of liquid crystals. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 1. World Scientific, New Jersey, pp 139–170

    Google Scholar 

  • Poje AC, Lumley JL (1995) A model for large-scale structures in turbulent shear flows. J Fluid Mech 285:349–369

    Article  MATH  MathSciNet  Google Scholar 

  • Pollmann P, Stegemeyer H (1974) Influence of all-round pressure on structure of cholesteric mesophases. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 78:843–848

    Google Scholar 

  • Pottebaum TS, Gharib M (2004) The pinch-off process in a starting buoyant plume. Exp Fluids 37:87–94

    Article  Google Scholar 

  • Pottebaum TS, Gharib M (2006) Using oscillations to enhance heat transfer for a circular cylinder. Int J Heat Mass Transf 49:3190–3210

    Article  Google Scholar 

  • Pradeep AM, Sullerey RK (2004) Detection of separation in S-duct diffusers using shear sensitive liquid crystals. J Vis 7:299–307

    Google Scholar 

  • Praisner TJ, Smith CR (2006a) The dynamics of the horseshoe vortex and associated endwall heat transfer: part I—temporal behavior. J Turbomachinery 128:747–754

    Article  Google Scholar 

  • Praisner TJ, Smith CR (2006b) The dynamics of the horseshoe vortex and associated endwall heat transfer—part II- time-mean results. J Turbomach 128:755–762

    Article  Google Scholar 

  • Praisner TJ, Sabatini DR, Smith CR (2001) Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements. Exp Fluids 30:1–10

    Article  Google Scholar 

  • Prandtl L, Tietjens OG (1934) Applied hydro- and aeromechanics. McGraw-Hill, New York

    Google Scholar 

  • Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116

    Article  Google Scholar 

  • Pratt WK (1991) Digital image processing. Wiley, New York

    MATH  Google Scholar 

  • Raffel M, Willert M, Kompenhans J (1998) Particle image velocimetry, a practical guide. Springer, Berlin

    Google Scholar 

  • Rangel RH, Coimbra CFM (1998) General solution of the particle momentum equation in unsteady Stokes flows. J Fluid Mech 370:53–72

    Article  MATH  MathSciNet  Google Scholar 

  • Rayman B (1887) Contribution à l’histoire de la cholestérine. Bulletin de la Société Chimique de France, Nouvelle Série 47:898–901

    Google Scholar 

  • Reda DC, Aeschliman DP (1992) Liquid-crystal coatings for surface shear-stress visualization in hypersonic flows. AIAA J 29:155–158

    Google Scholar 

  • Reda DC, Muratore JJ (1994) Measurement of surface shear stress vectors using liquid crystal coatings. AIAA J 32:1576–1582

    Article  Google Scholar 

  • Reda DC, Wilder MC (1992) Liquid crystal coatings for surface shear-stress visualization in hypersonic flows. J Spacecr Rockets 29:155–158

    Article  Google Scholar 

  • Reda DC, Wilder MC (2001) Shear-sensitive liquid crystal coating method applied through transparent test surfaces. AIAA J 39:195–197

    Article  Google Scholar 

  • Reda DC, Muratore JJ, Heineck T (1994) Time and flow-direction responses of shear-stress-sensitive liquid crystal coatings. AIAA J 32:693–700

    Article  Google Scholar 

  • Reda DC, Wilder MC, Crowder JP (1997a) Simultaneous, full-surface visualizations of transition and separation using liquid crystal coatings. AIAA J 35:615–616

    Article  Google Scholar 

  • Reda DC, Wilder MC, Farina DJ, Zilliac G (1997b) New methodology for the measurement of surface shear stress vector distributions. AIAA J 4:608–614

    Article  Google Scholar 

  • Reda DC, Wilder MC, Mehta RD, Zilliac G (1998) Measurement of continuous pressure and shear distributions using coating and imaging techniques. AIAA J 36:895–899

    Article  Google Scholar 

  • Reinitzer F (1888) Beiträge zur kenntniss des cholesterins. Wiener Monatschr Für Chem 9:421–441

    Article  Google Scholar 

  • Richards CD, Richards RF (1998) Transient temperature measurements in a convectively cooled droplet. Exp Fluids 25:392–400

    Article  Google Scholar 

  • Roberts GT, East RA (1996) Liquid crystal thermography for heat transfer measurement in hypersonic flows: a review. J Spacecr Rockets 33:761–768

    Article  Google Scholar 

  • Roesgen T, Totaro R (2002) A statistical calibration technique for thermochromic liquid crystals. Exp Fluids 33:732–734

    Google Scholar 

  • Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Eng Ind Aerodyn 49:79–100

    Article  Google Scholar 

  • Rossotti H (1983) Colour, why the world isn’t gray. Princeton University Press, Princeton

    Google Scholar 

  • Roth TB, Anderson AM (2007) The effects of film thickness, light polarization and light intensity on the light transmission characteristics of thermochromic liquid crystal. ASME J Heat Transf 129:372–378

    Article  Google Scholar 

  • Russ JC (2002) The image processing handbook. CRC, Boca Raton

    Google Scholar 

  • Sabatino D, Smith CR (2002) Simultaneous velocity-surface heat transfer behavior of turbulent spots. Exp Fluids 33:13–21

    Google Scholar 

  • Sabatino DR, Praisner TJ, Smith CR (2000) A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements. Exp Fluids 28:497–505

    Article  Google Scholar 

  • Sage I (1990) Thermochromic liquid crystals in devices. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 3. World Scientific, New Jersey, pp 301–341

    Google Scholar 

  • Samulski ET (1982) Polymeric liquid crystal. Phys Today 35(5):40–46

    Article  Google Scholar 

  • Saniei N (2002) Liquid crystals and their application in heat transfer measurements. Heat Transfer Eng 23(4):1–2

    Article  Google Scholar 

  • Saniei N, Yan XJ (2000) An experimental study of heat transfer from a disk rotating in an infinite environment including heat transfer enhancement by jet impingement cooling. J Enhanc Heat Transf 7:231–245

    Google Scholar 

  • Sargison JE, Oldfield MLG, Guo SM, Lock GD, Rawlinson AJ (2005) Flow visualisation of the external flow from a converging slot-hole film-cooling geometry. Exp Fluids 38:304–318

    Article  Google Scholar 

  • Savory E, Syes DM, Toy N (2000) Visualization of transition on an axisymmetric body using shear sensitive liquid crystals. Opt Diag Eng 4:16–25

    Google Scholar 

  • Scala LC, Dixon GD (1969) Long term stability of cholesteric liquid crystal systems. Mol Cryst Liq Cryst 7:443–455

    Article  Google Scholar 

  • Scala LC, Dixon GD (1970) Long term stability of cholesteric liquid crystal systems 2. Mol Cryst Liq Cryst 10:411–423

    Article  Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13:R1–R19

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids(Suppl) S52–S60

  • Schöler H (1990) Thermal imaging on missiles in hypersonic flow. AGARD fluid dynamics symposium on “Missile Aerodynamics” Friedrichshafen, Germany 22–26 29:1–29:5

  • Shusser M, Gharib M (2000) Energy and velocity of a forming vortex ring. J Fluid Mech 416:173–185

    Article  MATH  MathSciNet  Google Scholar 

  • Sillekens JJM, Rindt CCM, van Steevenhoven AA (1998) Development of laminar mixed convection in a horizontal square channel with heated side walls. Int J Heat Fluid Flow 19:270–281

    Google Scholar 

  • Simonich JC, Moffat RJ (1982) New technique for mapping heat-transfer coefficient contours. Rev Sci Instrum 53:678–683

    Article  Google Scholar 

  • Smith CR, Praisner TJ, Sabatino DR (2000) Surface temperature sensing with thermochromic liquid crystals. In: Smits AJ, Lim TT (eds) Flow visualization, techniques and examples. Imperial College Press, Singapore, pp 149–167

    Google Scholar 

  • Smith CR, Sabatino DR, Praisner TJ (2001) Temperature sensing with thermochromic liquid crystals. Exp Fluids 30:190–201

    Article  Google Scholar 

  • Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1451

    Article  Google Scholar 

  • Son C, Gillespie D, Ireland P, Dailey GM (2001) Heat transfer and flow characteristics of an engine representative impingement cooling system. J Turbomach 123:154–160

    Article  Google Scholar 

  • Spencer MC, Jones TV, Lock GD (1996) Endwall heat transfer measurements in an annular cascade of nozzle guide vanes at engine representative Reynolds and Mach numbers. J Heat Fluid Flow 17:139–147

    Article  Google Scholar 

  • Stasiek J (1997) Thermochromic liquid crystals and true colour image processing in heat transfer and fluid-flow research. Heat Mass Transf 33:27–39

    Article  Google Scholar 

  • Stasiek J, Stasiek A, Jewartowski M, Collins MW (2006) Liquid crystal thermometry and true-colour digital image processing. Opt Laser Technol 38:243–256

    Article  Google Scholar 

  • Stasiek JA, Kowalewski TA (2002) Thermochromic liquid crystals applied for heat transfer research. Opto-electron Rev 10:1–10

    Google Scholar 

  • Sun JH, Leong KC, Liu CY (1997) Influence of hue origin on the hue-temperature calibration of thermochromic liquid crystals. Heat Mass Transf 33:121–127

    Article  Google Scholar 

  • Tanda G (2004) Heat transfer in rectangular channels with transverse and v-shaped broken ribs. Int J Heat Mass Transf 47:229–243

    Article  Google Scholar 

  • Tariq A, Ranigrahi PK, Muralidhar K (2004) Flow and heat transfer in the wake of a surface-mounted rib with a slit. Exp Fluids 37:701–719

    Article  Google Scholar 

  • Tariq A, Singh K, Panigrahi PK (2003) Flow and heat transfer in a rectangular duct with single rib and two ribs mounted on the bottom surface. J Enhanc Heat Transf 10:171–198

    Article  Google Scholar 

  • Teng S, Sohn DK, Han JC (2000) Unsteady wake effect on film temperature an effectiveness distributions for a gas turbine blade. J Turbomach 122:340–347

    Article  Google Scholar 

  • Toy N, Disimile PJ, Savory E (1999) Local shear stress measurements within a rectangular yawed cavity using liquid crystals. Opt Diag Engr 3:91–101

    Google Scholar 

  • Trautman MA, Glezer A (2002) The manipulation of the streamwise vortex instability in a natural convection boundary layer along a heated inclined flat plate. J Fluid Mech 470:31–61

    Article  MATH  MathSciNet  Google Scholar 

  • Treuner M, Rath HJ, Duda U, Siekmann J (1995) Thermocapillary flow in drops under low gravity analysed by the use of liquid crystals. Exp Fluids 19:264–273

    Article  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Uzol O, Camci C (2005) Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin fin arrays. ASME J Heat Transf 127:458–471

    Article  Google Scholar 

  • Vejrazka J, Marty Ph (2007) An alternative technique for the interpretation of temperature measurements using thermochromic liquid crystals. Heat Transf Eng 28:154–162

    Article  Google Scholar 

  • von Wolfersdorf J (2007) Influence of lateral conduction due to flow temperature variations in transient heat transfer measurements. Int J Heat Mass Transf 50:1122–1127

    Article  MATH  Google Scholar 

  • Wagner E, Stephan P (2007) Frequency response of a surface thermometer based on unencapsulated thermochromic liquid crystals. Exp Therm Fluid Sci 31:687–699

    Article  Google Scholar 

  • Wagner G, Schneider E, von Wolfersdorf J, Ott P, Weigand B (2007) Method for analysis of showerhead film cooling experiments on highly curved surfaces. Exp Therm Fluid Sci 31:381–389

    Article  Google Scholar 

  • Wang Z, Ireland PT, Jones TV, Davenport R (1996) A color image processing system for transient liquid crystal heat transfer experiments. J Turbomach 118:421–427

    Google Scholar 

  • Wang L, Sundén B (2004) An experimental investigation of heat transfer and fluid flow in a rectangular duct with broken v-shaped ribs. Exp Heat Transf 17:243–259

    Article  Google Scholar 

  • Westerweel J (1993) Digital particle image velocimetry—theory and application. PhD thesis, Delft University Press

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    Article  Google Scholar 

  • Wiberg R, Lior N (2004) Errors in thermochromic liquid crystal thermometry. Rev Sci Instrum 75(9):2985–2993

    Article  Google Scholar 

  • Wierzbowski M, Stasiek J (2002) Liquid crystal technique application for heat transfer investigation in a fin-tube heat exchanger element. J Vis 5:161–168

    Article  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

  • Woodmnasee WE (1966) Cholesteric liquid crystals and their application to thermal nondestructive testing. Mater Eval 24:564–566 571–572

    Google Scholar 

  • Woodmnasee WE (1968) Aerospace thermal mapping applications of liquid crystals. Appl Opt 7:1721–1727

    Article  Google Scholar 

  • Wozniak G, Wozniak K, Siekmann J (1996) Non-isothermal flow diagnostics using microencapsulated cholesteric particles. Appl Sci Res 56:145–156

    Article  Google Scholar 

  • Wright WD (1928–1929) A re-determination of the mixture curves of the spectrum. Trans Opt Soc Lond 30:141–164

    Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae. Wiley, New York

    Google Scholar 

  • Yan X, Saniei N (1996) Measurements of local heat transfer coefficients from a flat plate to a pair of circular air impinging jets. Exp Heat Transf 1:29–47

    Google Scholar 

  • Yan X, Saniei N (1997) Heat transfer from an obliquely impinging circular air jet to a flat plate. Int J Heat Fluid Flow 18:591–599

    Article  Google Scholar 

  • Yan Y, Owen JM (2002) Uncertainties in transient heat transfer measurements with liquid crystal. Int J Heat Fluid Flow 23:29–35

    Article  Google Scholar 

  • Yoon SH, Kim MS (2002) Investigation of circumferential variation of heat transfer coefficients during in-tube evaporation for R-22 and R-407C using liquid crystal. ASME J Heat Transf 124:845–853

    Article  Google Scholar 

  • Young T (1802) On the theory of light and colours (The 1801 Bakerian Lecture). Philos Trans R Soc Lond 92:12–48

    Article  Google Scholar 

  • Yuen CHN, Martinez-Botas RF (2005) Film cooling characteristics of rows of round holes at various streamwise angles in a crossflow: part II. Heat transfer coefficients. Int J Heat Mass Transf 48:5017–5035

    Article  Google Scholar 

  • Zhang X, Stasiek J, Collins MW (1995) Experimental and numerical analysis of convective heat transfer in turbulent channel flow with square and circular columns. Exp Therm Fluid Sci 10:229–237

    Article  Google Scholar 

  • Zharkova GM, Streltsov SA, Khachaturyan VM, Samsonova I (1999a) Selective reflection of light from aqueous dispersions of encapsulated cholesteric liquid crystals. Mol Cryst Liq Cryst 331:635–642

    Article  Google Scholar 

  • Zharkova GM, Streltsov SA, Khachaturyan VM (1999b) Aqueous dispersions of cholesteric liquid crystals and their optical properties. J Struct Chem 40:419–423

    Article  Google Scholar 

  • Zhong S, Kittichaikan C, Hodson HP, Ireland PT (1999) A study of unsteady wake-induced boundary-layer transition with thermochromic liquid crystals. Proc Inst Mech Eng 213:163–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Dabiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabiri, D. Digital particle image thermometry/velocimetry: a review. Exp Fluids 46, 191–241 (2009). https://doi.org/10.1007/s00348-008-0590-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0590-5

Keywords

Navigation