Skip to main content
Log in

Molecular gas dynamics applied to phase change processes at a vapor–liquid interface: shock-tube experiment and MGD computation for methanol

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper deals with a molecular gas-dynamics method applied to the accurate determination of the condensation coefficient of methanol vapor. The method consisted of an experiment using a shock tube and computations using a molecular gas-dynamics equation. The experiments were performed in such situations where the shift from a vapor–liquid equilibrium state to a nonequilibrium one is realized by a shock wave in a scale of molecular mean free time of vapor molecules. The temporal evolution in thickness of a liquid film formed on the shock-tube endwall behind a reflected shock wave is measured by an optical interferometer. By comparing the measured liquid-film thickness with numerical solutions for a polyatomic version of the Gaussian–BGK model of the Boltzmann equation, the condensation coefficient of methanol vapor is accurately determined in vapor–liquid nonequilibrium states. As a result, it is clear that the condensation coefficient is just unity very near to an equilibrium state, but is smaller far from the equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andries P, Le Tallec P, Perlat J-P, Perthame B (2000) The Gaussian–BGK model of Boltzmann equation with small Prandtl number. Eur J Mech B Fluids 19:813–830

    Article  Google Scholar 

  2. Cammenga HK (1980) Evaporation mechanism of liquids. In: Kaldis E (ed) Current topics in materials science 5. North-Holland, Amsterdam

  3. Cercignani C (2000) Rarefied gas dynamics: from basic concepts of actual calculation. Cambridge University Press, New York

    Google Scholar 

  4. Fujikawa S, Kotani M, Sato H, Matsumoto M (1994) Molecular study of evaporation and condensation of an associating liquid: shock-tube experiment and molecular dynamics simulation. Heat Transfer—Japan Res 23:595–610

    Google Scholar 

  5. Fujikawa S, Kotani M, Takasugi N (1997) Theory of film condensation on shock-tube endwall behind reflected shock wave (theoretical basis for determination of condensation coefficient). Int J Japan Soc Mech Eng Ser B 40:159–165

    Google Scholar 

  6. Fujikawa S, Kotani M, Tsuzuyama N (2000) A molecular study on the nonequilibrium condensation process of acetic acid vapor by a shock wave. Trans Japan Soc Mech Eng B66:2384–2389 (in Japanese)

    Google Scholar 

  7. Fujikawa S, Okuda M, Akamatsu T, Goto T (1987) Non-equilibrium vapour condensation on a shock-tube endwall behind a reflected shock wave. J Fluid Mech 183:293–324

    CAS  Google Scholar 

  8. Hertz H (1882) Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys Chem 17:177–200

    Google Scholar 

  9. Japanese Society of Chemical Engineers (eds) (1985) Handbook of chemical engineering. JSCE, Maruzen (in Japanese)

  10. Knudsen M (1915) Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann Phys Chem 47:697–708

    CAS  Google Scholar 

  11. Lambert JD, Roberts GAH, Rowlinson JS, Wilkinson VJ (1949) The second virial coefficients of organic vapours. Proc R Soc Lond A 196:113–125

    Google Scholar 

  12. Lighthill MJ (1956) Viscosity effect in sound waves of finite amplitude. Surveys in mechanics. Cambridge University Press, Cambridge

  13. Maerefat M, Akamatsu T, Fujikawa S (1990a) Non-equilibrium condensation of water and carbon tetrachloride vapour in a shock-tube. Exp Fluids 9:345–351

    CAS  Google Scholar 

  14. Maerefat M, Fujikawa S, Akamatsu T (1990b) Non-equilibrium condensation of a vapour–gas mixture on a shock-tube endwall behind a reflected shock wave. Fluid Dyn Res 6:25–42

    Article  Google Scholar 

  15. Maerefat M, Fujikawa S, Akamatsu T, Goto T, Mizutani T (1989) An experimental study of non-equilibrium vapour condensation in a shock-tube. Exp Fluids 7:513–520

    CAS  Google Scholar 

  16. Matsumoto M, Fujikawa S (1997) Non-equilibrium vapor condensation: Molecular simulation and shock-tube experiment. Microscale Thermophys Eng 1:119–126

    Article  CAS  Google Scholar 

  17. Matsumoto M, Yasuoka K (1994) Evaporation and condensation at a liquid surface: II. Methanol. J Chem Phys 101:7912–7917

    Article  CAS  Google Scholar 

  18. Sone Y (2002) Kinetic theory and fluid dynamics. Birkhäuser, Boston

  19. Sone Y, Onishi Y (1978) Kinetic theory of evaporation and condensation: hydrodynamic equations and slip boundary conditions. J Phys Soc Japan 44:1981–1994

    CAS  Google Scholar 

  20. Yano T, Kobayashi K, Fujikawa S (2003) Numerical study of condensation of a polyatomic vapor by a shock wave based on the kinetic theory of gases. In: Proceedings of 2003 JSME–ASME Fluids Engineering Division Summer Meeting. FEDSM 2003-45022

  21. Yasuoka K, Matsumoto M (1994) Evaporation and condensation at a liquid surface: I. Argon. J Chem Phys 101:7904–7911

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support by Grants-in-Aid for Scientific Research (B), for Fujikawa (2002, 2003) and for Yano (2003), from The Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yano.

Appendix

Appendix

The mathematical formulation of the problem has already been shown in our recent paper (Yano et al. 2003). We present here the governing equation, boundary condition, and main parameters used in the calculations for readers’ convenience.

The present problem is a spatially one-dimensional formulation. The polyatomic version of the Gaussian–BGK model of Boltzmann equation can therefore be written as (Andries et al. 2000)

$$ \frac{{\partial f}} {{\partial t}} + {\left( {\xi _{1} - u_{{\ell }} } \right)}\frac{{\partial f}} {{\partial x}} = \frac{p} {{\mu {\left( {1 - \nu + \theta \nu } \right)}}}{\left[ {G{\left( f \right)} - f} \right]}, $$
(4)

where f is the velocity distribution function for methanol vapor molecules, x is the spatial coordinate measured from the surface of the growing liquid film, ξ 1(=ξ x ) is the x component of molecular velocity, u is the growing speed of the liquid film, p is the vapor pressure, µ is the viscosity, and θ and ν are parameters (see below). The right-hand side represents the effect of molecular collisions and G(f) is defined as

$$ G{\left( f \right)} = \rho a{\left( f \right)}b{\left( f \right)}, $$
(5)
$$ a{\left( f \right)} = \frac{1} {{{\sqrt {\det {\left( {2\pi \tau _{{ij}} } \right)}} }}}\exp {\left[ { - \frac{1} {2}{\left( {\xi _{i} - u_{i} } \right)}\tau ^{{ - 1}}_{{ij}} {\left( {\xi _{j} - u_{j} } \right)}} \right]}, $$
(6)
$$ b{\left( f \right)} = \frac{1} {{\Gamma {\left( {\frac{n} {2} + 1} \right)}{\left( {RT_{{{\text{rel}}}} } \right)}^{{n/2}} }}\exp {\left( { - \frac{{\eta ^{{2/n}} }} {{RT_{{{\text{rel}}}} }}} \right)}, $$
(7)

where ρ is the vapor density, u i the fluid velocity, τ ij a rectified stress tensor, T rel the relaxation temperature, Γ the gamma function, det the determinant, and η 2/n the rotational energy of a molecule with n degrees of freedom of rotation. The definitions of macroscopic variables in Eqs. 5, 6, and 7, ρ, u i , τ ij , and T rel, are given through the following equations:

$$ \begin{array}{*{20}l} {{\rho = {\int {f{\text{d}}{\mathbf{\xi }}{\text{d}}\eta ,} }} \hfill} & {{u_{i} = \delta _{{i1}} u,} \hfill} & {{\rho u = {\int {\xi _{1} f{\text{d}}{\mathbf{\xi }}{\text{d}}\eta } }} \hfill} \\ \end{array} , $$
(8)
$$ 3\rho RT_{{{\text{tr}}}} = {\int {{\left( {\xi _{i} - u_{i} } \right)}^{2} f{\text{d}}{\mathbf{\xi }}{\text{d}}\eta } }, $$
(9)
$$ n\rho RT_{{\operatorname{int} }} = 2{\int {\eta ^{{2/n}} f{\text{d}}{\mathbf{\xi }}{\text{d}}\eta } }, $$
(10)
$$ {\left( {3 + n} \right)}RT = 3RT_{{{\text{tr}}}} + nRT_{{\operatorname{int} }} , $$
(11)
$$ \begin{array}{*{20}l} {{p = \rho RT,} \hfill} & {{T_{{{\text{rel}}}} = \theta T} \hfill} \\ \end{array} + {\left( {1 - \theta } \right)}T_{{\operatorname{int} }} , $$
(12)
$$ \rho \Theta _{{ij}} = {\int {{\left( {\xi _{i} - u_{i} } \right)}{\left( {\xi _{j} - u_{j} } \right)}f{\text{d}}{\mathbf{\xi }}{\text{d}}\eta } }, $$
(13)
$$ \tau _{{ij}} = {\left( {1 - \theta } \right)}{\left[ {{\left( {1 - \nu } \right)}RT_{{{\text{tr}}}} \delta _{{ij}} + \nu \Theta _{{ij}} } \right]} + \theta RT\delta _{{ij}} , $$
(14)

where ξ=(ξ 1,ξ 2,ξ 3) is the molecular velocity, T tr and T int are temperatures associated with the translational and rotational motions of molecules, respectively, T is the vapor temperature, Θ ij the stress tensor, and δ ij Kronecker’s delta. The three-dimensional integration with respect to ξ is performed over the whole space of ξ, and the integration with respect to η is made over 0≤η<∞.

The most important feature of the Gaussian–BGK model is that it can give a realistic Prandtl number and second viscosity coefficient, by adjusting the parameters θ and ν in Eqs. 4, 12, and 14 (Andries et al. 2000). For the methanol vapor, we set θ=11/17 and ν=−1/2, and this gives the Prandtl number of 0.85 and the ratio of the first and second viscosity coefficients 0.8 (for air, Lighthill 1956). The parameter n is set as n=6 to approximate an experimental value of the ratio of specific heats of methanol vapor, γ=1.228 (290 K).

The boundary condition at the vapor–liquid interface is given by

$$ f{\left( {x = 0,\xi _{1} > u_{{\ell }} } \right)} = \alpha f^{*} + {\left( {1 - \alpha } \right)}f^{r} , $$
(15)
$$ \begin{array}{*{20}l} {{f* = \rho *a_{{\text{M}}} b_{{\text{M}}} ,} \hfill} &amp; {{f^{r} = \sigma _{{\text{w}}} a_{{\text{M}}} b_{{\text{M}}} } \hfill} \\ \end{array} , $$
(16)
$$ a_{{\text{M}}} = \frac{1} {{{\left( {2\pi RT_{{\ell }} } \right)}^{{3/2}} }}\exp {\left[ { - \frac{{{\left( {\xi _{1} - u_{{\ell }} } \right)}^{2} + \xi ^{2}_{2} + \xi ^{2}_{3} }} {{2RT_{{\ell }} }}} \right]}, $$
(17)
$$ b_{{\text{M}}} = \frac{1} {{\Gamma {\left( {\frac{n} {2} + 1} \right)}{\left( {RT_{{\ell }} } \right)}^{{n/2}} }}\exp {\left( { - \frac{{\eta ^{{2/n}} }} {{RT_{{\ell }} }}} \right)}, $$
(18)

where ρ*=p*/(RT ) is the saturated vapor density and σ w is determined from the velocity distribution function of molecules coming from the vapor, f=f i (Sone 2002)

$$ \sigma _{{\text{w}}} = - {\sqrt {\frac{{2\pi }} {{RT_{{\ell }} }}} }{\int_{\xi _{1} &lt; u_{l} } {{\left( {\xi _{1} - u_{{\ell }} } \right)}f^{i} {\text{d}}{\mathbf{\xi }}{\text{d}}\eta } }. $$
(19)

The saturated vapor pressure p* is evaluated from Antoine’s formula, which can be written for methanol vapor as

$$ \begin{array}{*{20}l} {{p* = \exp {\left( {A - \frac{B} {{C + T_{{\ell }} }}} \right)}} \hfill} &amp; {{{\left( {{\text{Pa}}} \right)},} \hfill} \\ \end{array} $$
(20)

where A=23.4803, B=3,626.55, and C=−34.29 (Japanese Society of Chemical Engineers 1985).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujikawa, S., Yano, T., Kobayashi, K. et al. Molecular gas dynamics applied to phase change processes at a vapor–liquid interface: shock-tube experiment and MGD computation for methanol. Exp Fluids 37, 80–86 (2004). https://doi.org/10.1007/s00348-004-0787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-004-0787-1

Keywords

Navigation