Skip to main content
Log in

A two-temperature six-moment approach to the shock wave problem in a polyatomic gas

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Starting from a two-velocity version of a recently derived six-moment closure of the kinetic Boltzmann description of a polyatomic gas, based on a discrete structure of internal energy levels, the classical shock wave problem is analyzed in some detail. Explicit analytical results are achieved under a simplifying assumption equivalent to the standard approximation of polytropic gases, to which this paper is generally restricted. In particular, existence of smooth solutions, occurrence of jumps in the kinetic and excitation temperatures, and possible temperature overshooting are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  2. Cercignani, C.: Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Bourgat, J.F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases. Eur. J. Mech. B Fluids 13, 237–254 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the enrgy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 18, 236–237 (2005)

    MATH  Google Scholar 

  5. Groppi, M., Spiga, G.: Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J. Math. Chem. 26, 197–219 (1999)

    Article  MATH  Google Scholar 

  6. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for polyatomic gases. Physica A 392, 1302–1317 (2013)

    Article  MathSciNet  Google Scholar 

  7. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  8. Ruggeri, T.: Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad. Sin. (N.S.) 11, 1–22 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Recent results on nonlinear extended thermodynamics of real gases with six fields Part II: shock wave structure. Ric. Mat. 65, 279–288 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pavic-Colic, M., Madjarevic, D., Simic, S.: Polyatomic gases with dynamic pressure: kinetic non-linear closure and the shock structure. Int. J. Non-linear Mech. 92, 160–175 (2017)

    Article  Google Scholar 

  11. Bisi, M., Ruggeri, T., Spiga, G.: Dynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamics. Kinet. Relat. Models 11, 71–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mika, J.R., Banasiak, J.: Singularly Perturbed Evolution Equations with Applications to Kinetic Theory. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  13. Bisi, M., Spiga, G.: On kinetic models for polyatomic gases and their hydrodynamic limits. Ric. Mat. 66, 113–124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511–524 (1954)

    Article  MATH  Google Scholar 

  15. Andries, P., Aoki, K., Perthame, B.: A consistent BGK type model for gas mixtures. J. Stat. Phys. 106, 993–1018 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Groppi, M., Spiga, G.: A Bhatnagar–Gross–Krook-type approach for chemically reacting gas mixtures. Phys. Fluids 16, 4273–4284 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bisi, M., Groppi, M., Spiga, G.: Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit. Phys. Rev. E 81, 036327 (2010)

    Article  Google Scholar 

  18. Bisi, M., Cáceres, M.J.: A BGK relaxation model for polyatomic gas mixtures. Commun. Math. Sci. 14, 297–325 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brull, S.: An ellipsoidal statistical model for gas mixtures. Comm. Math. Sci. 13, 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kosuge, S., Aoki, K., Goto, T.: Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. In: Ketsdever, A., Struchtrup, H. (eds.) AIP Conference Proceedings of “30th International Symposium on Rarefied Gas Dynamics”, vol. 1786, 180004 (2016)

Download references

Acknowledgements

This work has been performed in the frame of activities sponsored by INdAM-GNFM and by the University of Parma. Some of the results contained in this paper have been presented in the conference WASCOM 2017 in honour of Tommaso Ruggeri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Spiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisi, M., Spiga, G. A two-temperature six-moment approach to the shock wave problem in a polyatomic gas. Ricerche mat 68, 1–12 (2019). https://doi.org/10.1007/s11587-018-0370-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0370-3

Keywords

Mathematics Subject Classification

Navigation