Skip to main content

Advertisement

Log in

Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To perform a systematic literature review on the clinical impact of augmented reality (AR) for urological interventions.

Methods

As of June 21, 2018, systematic literature review was performed via Medline, Embase and Cochrane databases in accordance with the PRISMA guidelines and registered at PROSPERO (CRD42018102194). Only full text articles in English were included, without time restrictions. Articles were considered if they reported on the use of AR during urological intervention and the impact on the surgical outcomes. The risk of bias and the quality of each study included were independently assessed using the standard Cochrane Collaboration risk of bias tool and the Risk Of Bias In Non-randomised Studies—of Interventions Tool (ROBINS-I).

Results

131 articles were identified. 102 remained after duplicate removal and were critically reviewed for evidence synthesis. 20 studies reporting on the outcomes of the use of AR during urological interventions in a clinical setting were considered. Given the mostly non-comparative design of the studies identified, the evidence synthesis was performed in a descriptive and narrative manner. Only one comparative study was found, with the remaining 19 items being single-arm observational studies. Based on the existing evidence, we are unable to state that AR improves the outcomes of urological interventions. The major limitation of AR-assisted surgery is inaccuracy in registration, translating into a poor navigation precision.

Conclusions

To date, there is limited evidence showing superior therapeutic benefits of AR-guided surgery when compared with the conventional surgical approach to the respective disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tang SL, Kwoh CK, Teo MY et al (1998) Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 17:49–58

    Article  CAS  Google Scholar 

  2. Sim HG, Yip SK, Cheng CW (2006) Equipment and technology in surgical robotics. World J Urol 24:128–135. https://doi.org/10.1007/s00345-006-0070-6

    Article  PubMed  Google Scholar 

  3. Ackerman JD, Keller K, Fuchs H (2001) Real-time anatomical 3D image extraction for laparoscopic surgery. Stud Health Technol Inform 81:18–22

    CAS  PubMed  Google Scholar 

  4. van Oosterom MN, van der Poel HG, Navab N et al (2018) Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions. Curr Opin Urol 28:205–213. https://doi.org/10.1097/mou.0000000000000478

    Article  PubMed  Google Scholar 

  5. Abdul-Muhsin HM, Humphreys (2016) Advances in laparoscopic urologic surgery techniques. F1000Res. https://doi.org/10.12688/f1000research.7660.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Higgins JPT, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  Google Scholar 

  7. Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ukimura O, Gill IS (2008) Imaging-assisted endoscopic surgery: Cleveland Clinic experience. J Endourol 22:803–810. https://doi.org/10.1089/end.2007.9823

    Article  PubMed  Google Scholar 

  9. Su LM, Vagvolgyi BP, Agarwal R et al (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73:896–900. https://doi.org/10.1016/j.urology.2008.11.040

    Article  PubMed  Google Scholar 

  10. Drewniak T, Rzepecki M, Juszczak K et al (2011) Augmented reality for image guided therapy (ARIGT) of kidney tumor during nephron sparing surgery (NSS): animal model and clinical approach. Folia Med Cracov 51:77–90

    PubMed  Google Scholar 

  11. Makanjuola JK, Aggoun A, Swash M et al (2012) 3D-holoscopic imaging: a novel way to enhance imaging in minimally invasive therapy in urological oncology. J Endourol 1:A39–A40

    Google Scholar 

  12. KleinJan GH, van den Berg NS, van Oosterom MN et al (2016) Toward (Hybrid) Navigation of a Fluorescence Camera in an Open Surgery Setting. J Nucl Med 57:1650–1653. https://doi.org/10.2967/jnumed.115.171645

    Article  PubMed  Google Scholar 

  13. van Oosterom MN, Meershoek P, KleinJan GH et al (2018) Navigation of fluorescence cameras during soft tissue surgery—is it possible to use a single navigation setup for various open and laparoscopic urological surgery applications? J Urol 199:1061–1068. https://doi.org/10.1016/j.juro.2017.09.160

    Article  PubMed  Google Scholar 

  14. Nosrati MS, Amir-Khalili A, Peyrat JM et al (2016) Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors. Int J Comput Assist Radiol Surg 11:1409–1418. https://doi.org/10.1007/s11548-015-1331-x

    Article  PubMed  Google Scholar 

  15. Nosrati MS, Abugharbieh R, Peyrat JM et al (2016) Simultaneous multi-structure segmentation and 3D nonrigid pose estimation in image-guided robotic surgery. IEEE Trans Med Imaging 35:1–12. https://doi.org/10.1109/tmi.2015.2452907

    Article  PubMed  Google Scholar 

  16. Amir-Khalili A, Peyrat J-M, Abinahed J et al (2014) Auto localization and segmentation of occluded vessels in robot-assisted partial nephrectomy. Med Image Comput Comput Assist Interv 17:407–414

    PubMed  Google Scholar 

  17. Wake N, Bjurlin MA, Rostami P et al (2018) Three-dimensional printing and augmented reality: enhanced precision for robotic assisted partial nephrectomy. Urology 116:227–228. https://doi.org/10.1016/j.urology.2017.12.038

    Article  PubMed  Google Scholar 

  18. Porpiglia F, Fiori C, Checcucci E et al (2018) Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol. https://doi.org/10.1016/j.eururo.2017.12.027

    Article  PubMed  Google Scholar 

  19. Marescaux J, Rubino F, Arenas M et al (2004) Augmented-reality-assisted laparoscopic adrenalectomy. JAMA 292:2214–2215. https://doi.org/10.1001/jama.292.18.2214-c

    Article  CAS  PubMed  Google Scholar 

  20. Teber D, Guven S, Simpfendorfer T et al (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56:332–338. https://doi.org/10.1016/j.eururo.2009.05.017

    Article  PubMed  Google Scholar 

  21. Nakamura K, Naya Y, Zenbutsu S et al (2010) Surgical navigation using three-dimensional computed tomography images fused intraoperatively with live video. J Endourol 24:521–524. https://doi.org/10.1089/end.2009.0365

    Article  PubMed  Google Scholar 

  22. Ruppert GC, Reis LO, Amorim PH et al (2012) Touchless gesture user interface for interactive image visualization in urological surgery. World J Urol 30:687–691. https://doi.org/10.1007/s00345-012-0879-0

    Article  PubMed  Google Scholar 

  23. Simpfendorfer T, Gasch C, Hatiboglu G et al (2016) Intraoperative computed tomography imaging for navigated laparoscopic renal surgery: first clinical experience. J Endourol 30:1105–1111. https://doi.org/10.1089/end.2016.0385

    Article  PubMed  Google Scholar 

  24. Singla R, Edgcumbe P, Pratt P et al (2017) Intra-operative ultrasound-based augmented reality guidance for laparoscopic surgery. Health Technol Lett 4:204–209. https://doi.org/10.1049/htl.2017.0063

    Article  Google Scholar 

  25. Teber D, Simpfendorfer T, Guven S et al (2010) In-vitro evaluation of a soft-tissue navigation system for laparoscopic prostatectomy. J Endourol 24:1487–1491. https://doi.org/10.1089/end.2009.0289

    Article  PubMed  Google Scholar 

  26. Simpfendorfer T, Baumhauer M, Muller M et al (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25:1841–1845. https://doi.org/10.1089/end.2010.0724

    Article  PubMed  Google Scholar 

  27. Thompson S, Penney G, Billia M et al (2013) Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 111:1081–1090. https://doi.org/10.1111/j.1464-410X.2012.11692.x

    Article  PubMed  Google Scholar 

  28. Porpiglia F, Fiori C, Checcucci E et al (2018) Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology 115:184. https://doi.org/10.1016/j.urology.2018.01.028

    Article  PubMed  Google Scholar 

  29. Porpiglia F, Checcucci E, Amparore D et al (2018) Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D ™) technology: a radiological and pathological study. BJU Int. https://doi.org/10.1111/bju.14549

    Article  PubMed  Google Scholar 

  30. Rassweiler JJ, Müller M, Fangerau M et al (2012) iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61:628–631. https://doi.org/10.1016/j.eururo.2011.12.024

    Article  PubMed  Google Scholar 

  31. Rassweiler MC, Klein J, Muller M et al (2014) IPad guided puncture of the kidney-evaluation with an ex vivo model. Eur Urol Suppl 13(1):e1075

    Article  Google Scholar 

  32. Rassweiler MC, Klein JT, Mueller M et al (2016) IPad assisted PCNL-clinical study to compare to the standard puncturing technique. Eur Urol Suppl 15(3):e578 + e578a

    Article  Google Scholar 

  33. Wu JC, Lin MS, Wu HS, Liu JK (2012) Augmented reality techniques assisted laparoscopic ureteroureterostomy for retrocaval ureter. Chin Med J 125:4158–4159

    PubMed  Google Scholar 

  34. Borgmann H, Rodriguez Socarras M, Salem J et al (2017) Feasibility and safety of augmented reality-assisted urological surgery using smartglass. World J Urol 35:967–972. https://doi.org/10.1007/s00345-016-1956-6

    Article  CAS  PubMed  Google Scholar 

  35. Muller M, Rassweiler MC, Klein J et al (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8:663–675. https://doi.org/10.1007/s11548-013-0828-4

    Article  PubMed  Google Scholar 

  36. Edgcumbe P, Pratt P, Yang GZ et al (2015) Pico Lantern: surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector. Med Image Anal 25:95–102. https://doi.org/10.1016/j.media.2015.04.008

    Article  PubMed  Google Scholar 

  37. Wild E, Teber D, Schmid D et al (2016) Robust augmented reality guidance with fluorescent markers in laparoscopic surgery. Int J Comput Assist Radiol Surg 11:899–907. https://doi.org/10.1007/s11548-016-1385-4

    Article  PubMed  Google Scholar 

  38. Kong SH, Haouchine N, Soares R et al (2017) Robust augmented reality registration method for localization of solid organs’ tumors using CT-derived virtual biomechanical model and fluorescent fiducials. Surg Endosc 31:2863–2871. https://doi.org/10.1007/s00464-016-5297-8

    Article  PubMed  Google Scholar 

  39. Yu F, Song E, Liu H et al (2018) An augmented reality endoscope system for ureter position detection. J Med Syst 42:138. https://doi.org/10.1007/s10916-018-0992-8

    Article  PubMed  Google Scholar 

  40. Garcia-Cruz E, Bretonnet A, Alcaraz A (2018) Testing smart glasses in urology: clinical and surgical potential applications. Actas Urol Esp 42:207–211. https://doi.org/10.1016/j.acuro.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  41. Porpiglia F, Bertolo R, Amparore D et al (2018) Augmented reality during robot-assisted radical prostatectomy: expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol Nefrol 70:226–229. https://doi.org/10.23736/s0393-2249.18.03143-0

    Article  PubMed  Google Scholar 

  42. Antonelli A, Veccia A, Palumbo C et al (2018) Holographic reconstructions for preoperative planning before partial nephrectomy: a head-to-head comparison with standard CT scan. Urol Int 12:1–6. https://doi.org/10.1159/000495618

    Article  Google Scholar 

  43. Bertolo R, Autorino R, Fiori C et al (2019) Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: urologists’ perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A. 29:233–239. https://doi.org/10.1089/lap.2018.0486

    Article  PubMed  Google Scholar 

  44. Hughes-Hallett A, Mayer EK, Marcus HJ et al (2014) Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 83:266–273. https://doi.org/10.1016/j.urology.2013.08.049

    Article  PubMed  Google Scholar 

  45. Autorino R, Porpiglia F, Dasgupta P et al (2017) Precision surgery and genitourinary cancers. Eur J Surg Oncol 43:893–908. https://doi.org/10.1016/j.ejso.2017.02.005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Protocol/project development: RB, PD, AH. Data collection or management: RB, MS. Data analysis: RB, AH. Manuscript writing: RB. Manuscript editing: PB, PD, AH, FP.

Corresponding author

Correspondence to Riccardo Bertolo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolo, R., Hung, A., Porpiglia, F. et al. Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come. World J Urol 38, 2167–2176 (2020). https://doi.org/10.1007/s00345-019-02711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-019-02711-z

Keywords

Navigation