Skip to main content

Advertisement

Log in

Equipment and technology in surgical robotics

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master–slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li QH, Zamorano L, Pandya A et al (2002) The application accuracy of the NeuroMate robot—a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7:90

    PubMed  Google Scholar 

  2. Bargar WL, Bauer A, Borner M (1998) Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 354:82–91

    Article  PubMed  Google Scholar 

  3. Davies BL, Hibberd RD, Ng WS et al (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng [H] 205:35

    CAS  Google Scholar 

  4. Harris SJ, Arambula-Cosio F, Mei Q et al (1997) The Probot—an active robot for prostate resection. Proc Inst Mech Eng [H] 211:317

    CAS  Google Scholar 

  5. Ho G, Ng WS, Teo MY et al (2001) Experimental study of transurethral robotic laser resection of the prostate using the LaserTrode lightguide. J Biomed Opt 6:244

    Article  PubMed  CAS  Google Scholar 

  6. Rovetta A, Sala R (1995) Execution of robot-assisted biopsies within the clinical context. J Image Guid Surg 1:280

    Article  PubMed  CAS  Google Scholar 

  7. Cleary K, Freedman M, Clifford M et al (2001) Image-guided robotic delivery system for precise placement of therapeutic agents. J Control Release 74:363

    Article  PubMed  CAS  Google Scholar 

  8. Fichtinger G, DeWeese TL, Patriciu A et al (2002) System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance. Acad Radiol 9:60

    Article  PubMed  Google Scholar 

  9. Wei Z, Wan G, Gardi L et al (2004) Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation. Med Phys 31:539

    Article  PubMed  Google Scholar 

  10. Krieger A, Susil RC, Menard C et al (2005) Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng 52:306

    Article  PubMed  Google Scholar 

  11. Hempel E, Fischer H, Gumb L et al (2003) An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg 8:180

    Article  PubMed  Google Scholar 

  12. Cadeddu JA, Bzostek A, Schreiner S et al (1997) A robotic system for percutaneous renal access. J Urol 158:1589

    Article  PubMed  CAS  Google Scholar 

  13. Stoianovici DCK, Patriciu A, Mazilu D, Stanimir A, Craciumoiu N et al (2003) AcuBot: a robot for radiological interventions. IEEE Trans Rob Autom 19:926

    Article  Google Scholar 

  14. Su LM, Stoianovici D, Jarrett TW et al (2002) Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol 16:471

    Article  PubMed  Google Scholar 

  15. Kasalicky MA, Svab J, Fried M et al (2002) [AESOP 3000—computer-assisted surgery, personal experience]. Rozhl Chir 81:346

    PubMed  CAS  Google Scholar 

  16. Kobayashi E, Masamune K, Sakuma I et al (1999) A new safe laparoscopic manipulator system with a five-bar linkage mechanism and an optical zoom. Comput Aided Surg 4:182

    Article  PubMed  CAS  Google Scholar 

  17. Salama IA, Schwaitzberg SD (2005) Utility of a voice-activated system in minimally invasive surgery. J Laparoendosc Adv Surg Tech A 15:443

    Article  PubMed  Google Scholar 

  18. Rafiq A, Moore JA, Zhao X et al (2004) Digital video capture and synchronous consultation in open surgery. Ann Surg 239:567

    Article  PubMed  Google Scholar 

  19. Mendez I, Hill R, Clarke D et al (2005) Robotic long-distance telementoring in neurosurgery. Neurosurgery 56:434

    Article  PubMed  Google Scholar 

  20. Sung GT, Gill IS (2001) Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems. Urology 58:893

    Article  PubMed  CAS  Google Scholar 

  21. Menon M, Shrivastava A, Tewari A (2005) Laparoscopic radical prostatectomy: conventional and robotic. Urology 66:101

    Article  PubMed  Google Scholar 

  22. Sim HG, Yip SK, Lau WK et al (2004) Early experience with robot-assisted laparoscopic radical prostatectomy. Asian J Surg 27:321

    Article  PubMed  Google Scholar 

  23. Sim HG, Yip SKH, Lau WKO, Tan YH, Wong MYC, Cheng CWS (2006) Team-based approach reduces learning curve in robot-assisted laparoscopic radical prostatectomy. Int J Urol (in press)

  24. Kitagawa M, Dokko D, Okamura AM et al (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129:151

    Article  PubMed  Google Scholar 

  25. Tang SL, Kwoh CK, Teo MY et al (1998) Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 17:49

    Article  PubMed  CAS  Google Scholar 

  26. Shuhaiber JH (2004) Augmented reality in surgery. Arch Surg 139:170

    Article  PubMed  Google Scholar 

  27. Marescaux J, Rubino F, Arenas M et al (2004) Augmented-reality-assisted laparoscopic adrenalectomy. Jama 292:2214

    Article  PubMed  CAS  Google Scholar 

  28. Hongo K, Kobayashi S, Kakizawa Y et al (2002) NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery 51:985

    Article  PubMed  Google Scholar 

  29. Goto T, Hongo K, Kakizawa Y et al (2003) Clinical application of robotic telemanipulation system in neurosurgery. Case report. J Neurosurg 99:1082

    Article  PubMed  Google Scholar 

  30. Marescaux J, Leroy J, Gagner M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413:379

    Article  PubMed  CAS  Google Scholar 

  31. Marescaux J, Leroy J, Rubino F et al (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235:487

    Article  PubMed  Google Scholar 

  32. Lee BR, Caddedu JA, Janetschek G et al (1998) International surgical telementoring: our initial experience. Stud Health Technol Inform 50:41

    PubMed  CAS  Google Scholar 

  33. Lee BR, Png DJ, Liew L et al (2000) Laparoscopic telesurgery between the United States and Singapore. Ann Acad Med Singapore 29:665

    PubMed  CAS  Google Scholar 

  34. Lee BR, Bishoff JT, Janetschek G et al (1998) A novel method of surgical instruction: international telementoring. World J Urol 16:367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

There was no additional funding support for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gee Sim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sim, H.G., Yip, S.K.H. & Cheng, C.W.S. Equipment and technology in surgical robotics. World J Urol 24, 128–135 (2006). https://doi.org/10.1007/s00345-006-0070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-006-0070-6

Keywords

Navigation