Skip to main content
Log in

Deciphering the Role of Nanoparticles in Stimulating Drought and Salinity Tolerance in Plants: Recent Insights and Perspective

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The co-existence of drought and salinity stresses due to rapid global climate change is detrimental to plants. Both stress conditions alter the morpho-physiological, biochemical, and molecular responses of plants due to ionic toxicity, osmotic, hormonal, and nutrient imbalance, and oxidative stress. In general, the combination of both stresses is worse for plants rather than an individual stress condition. To date, various novel strategies including the use of nanoparticles (NPs) have been tried to minimize the negative effects of these stresses. Despite various interventions, improvements are still needed to create tolerance against the combined stress of drought and salinity using NPs in plants. The application of NPs regulates various plant defense mechanisms such as the activation of antioxidative mechanisms to detoxification of reactive oxygen species (ROS) and effectively interferes with gene expression and cellular mechanisms to protect the plant cells. Here, we present an overview of how these stresses are deleterious for plants’ health and discuss the potential mechanisms underlying NPs-induced tolerance against drought and salinity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi H, Jamil M, Haq A, Ali S, Ahmad R, Malik Z, Parveen Z (2016) Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agric 103(2):229–238

    Article  Google Scholar 

  • Adrees M, Khan ZS, Ali S, Hafeez M, Khalid S, Ur Rehman MZ, Hussain A, Hussain K, Chatha SAS, Rizwan M (2020) Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere 238:124681

    Article  CAS  PubMed  Google Scholar 

  • Ahmad J, Bashir H, Bagheri R, Baig A, Al-Huqail A, Ibrahim MM, Qureshi MI (2017) Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS ONE 12(9):e0185118

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Ahmad R, Iqbal MA (2018) Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. J Plant Nutr 41(13):1734–1743

    Article  CAS  Google Scholar 

  • Ahmadian K, Jalilian J, Pirzad A (2021) Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agric Water Manag 244:106544

    Article  Google Scholar 

  • Ahmed F, Javed B, Razzaq A, Mashwani ZuR (2021a) Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotechnol 15(1):68–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G, Hashem A, Al-Arjani A-BF, Alqarawi AA (2021b) Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol Environ Saf 209:111829

    Article  CAS  PubMed  Google Scholar 

  • Akbar Mozafari A, Havas F, Ghaderi N (2018) Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria× ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Culture 132(3):511–523

    Article  Google Scholar 

  • Akhtar N, Ilyas N, Hayat R, Yasmin H, Noureldeen A, Ahmad P (2021) Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol Biochem 166:160–176

    Article  CAS  PubMed  Google Scholar 

  • Alabdallah NM, Hasan M, Hammami I, Alghamdi AI, Alshehri D, Alatawi HA (2021) Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants 10(8):1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alejandro S, Höller S, Meier B, Peiter E (2020) Manganese in plants: from acquisition to subcellular allocation. Front Plant Sci 11:300

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Fahdawi AJJ, Allawi MM (2019) Impact of biofertilizers and nano potassium on growth and yield of eggplant (Solanum melongena l.). Plant Archives 19(2):1809–1815

    Google Scholar 

  • Ali MA, Mosa KA, El-Keblawy A, Alawadhi H (2019) Exogenous production of silver nanoparticles by Tephrosia apollinea living plants under drought stress and their antimicrobial activities. Nanomaterials 9(12):1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Mehmood A, Khan N (2021) Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater. https://doi.org/10.1155/2021/6677616

    Article  Google Scholar 

  • Ali Naghi Zadeh A, Mahmoudi Zarandi M, Khoshroo SMR, Hasan Zadeh F (2020) The effect of green silver nanoparticles on spinach (Spinacia oleracea) seed germination under salt stress. Iran J Biol Sci 15(3):1–10

    Google Scholar 

  • Aliakbari M, Cohen SP, Lindlöf A, Shamloo-Dashtpagerdi R (2021) Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. Plant Physiol Biochem 161:248–258

    Article  CAS  PubMed  Google Scholar 

  • Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA-S, Shehata WF, Almaghasla MI (2023) The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants 12(2):292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Zahrani S, Astudillo-Calderón S, Pintos B, Pérez-Urria E, Manzanera JA, Martín L, Gomez-Garay A (2021) Role of synthetic plant extracts on the production of silver-derived nanoparticles. Plants 10(8):1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M (2022) How do plants respond to combined drought and salinity stress?—a systematic review. Plants 11(21):2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aqaei P, Weisany W, Diyanat M, Razmi J, Struik PC (2020) Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. J Plant Nutr 43(9):1205–1216

    Article  CAS  Google Scholar 

  • Aqaei Sagzabadi P, Weisany W, Dianat M (2021) Effect of nanosilicil potassium on growth and yield of maize (Zea mays L.) under drought stress. Env Stress Crop Sci 14(2):331–345

    Google Scholar 

  • Asadi-Kavan Z, Khavari-Nejad RA, Iranbakhsh A, Najafi F (2020) Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). J Plant Interact 15(1):166–179

    Article  CAS  Google Scholar 

  • Atereh Aliakbarpour F, Vaziri A, Mohseni M, (2020) Green synthesis of Au-Ag nanoparticles using Mentha piperita and effects of Au-Ag alloy nanoparticles on the growth of Mentha piperita under salinity stress. J Plant Process Funct 9(37):48

    Google Scholar 

  • Aththanayaka S, Thiripuranathar G, Ekanayake S (2022) Emerging advances in biomimetic synthesis of nanocomposites and potential applications. Mater Today Sustain 20:100206

    Article  Google Scholar 

  • Avellan A, Yun J, Zhang Y, Spielman-Sun E, Unrine JM, Thieme J, Li J, Lombi E, Bland G, Lowry GV (2019) Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13(5):5291–5305

    Article  CAS  PubMed  Google Scholar 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9(5):246

    Article  CAS  Google Scholar 

  • Aydin A, Kurt F, Hürkan K (2021) Key aromatic amino acid players in soybean (Glycine max) genome under drought and salt stresses. Biocatal Agric Biotechnol 35:102094

    Article  CAS  Google Scholar 

  • Azmat A, Tanveer Y, Yasmin H, Hassan MN, Shahzad A, Reddy M, Ahmad A (2022) Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere 297:133982

    Article  CAS  PubMed  Google Scholar 

  • Bahrami-Rad S, Hajiboland R (2017) Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Ann Agric Sci 62(2):121–130

    Article  Google Scholar 

  • Baz H, Creech M, Chen J, Gong H, Bradford K, Huo H (2020) Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 10(8):1192

    Article  CAS  Google Scholar 

  • Byczyńska A, Zawadzińska A, Piechocki R, Pietrak A, Salachna P (2021) Pre-planting application of colloidal silver nanoparticles enhances bulb yield of Lilium grown under NaCl stress. In: Proceedings of the 1st international electronic conference on agronomy, 3–17 May 2021, MDPI: Basel, Switzerland. https://doi.org/10.3390/IECAG2021-09722

  • Cortaga CQ, Sebidos RF (2019) Drought-induced modifications on the outer part of the root (OPR) and root endodermis of selected rice genotypes. J Crop Sci Biotechnol 22(2):131–138

    Article  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira AB, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development. Responses of organisms to water stress. InTech, London

    Google Scholar 

  • Dimkpa CO, Singh U, Adisa IO, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2018) Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 8(9):158

    Article  CAS  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2019) Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ 688:926–934

    Article  CAS  PubMed  Google Scholar 

  • Dugasa MT, Cao F, Ibrahim W, Wu F (2019) Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 165(2):134–143

    Article  CAS  PubMed  Google Scholar 

  • Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci 9(3):499

    Article  CAS  Google Scholar 

  • El-Hefnawy SF (2020) Nano NPK and growth regulator promoting changes in growth and mitotic index of pea plants under salinity stress. J Agric Chem Biotechnol 11(9):263–269

    Google Scholar 

  • El-Kereti A, M, A El-feky S, S Khater M, A Osman Y, A El-sherbini E-s, (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5(3):169–181

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed IM, Taha LS, Mazhar AM, Kandil MM (2019) Iron oxide nanoparticales role in micropropagation of Moringa oleifera L. under salinity stress. Middle East J 8(4):1123–1132

    Google Scholar 

  • El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8(8):1751–1773

    Article  CAS  Google Scholar 

  • Erfani S, Rezaei M, Farahvash F, Mahmoudjanlo M (2021) The effect of nano potassium fertilizer, potassium sulfate and salicylic acid on physiological characteristics of Calendula officinalis L. under water stress. J Iran Plant Ecophysiol Res 17:66–85

    Google Scholar 

  • Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F (2021) Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem 161:122–130

    Article  CAS  PubMed  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40(4):462–472

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) Future of Food and Agriculture 2018: Alternative Pathways to 2050. Food and Agriculture Organization of the United Nations: Rome, Italy. https://www.fao.org/3/I8429EN/i8429en.pdf

  • Farhangi-Abriz S, Ghassemi-Golezani K (2021) Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicol Environ Saf 211:111904

    Article  CAS  PubMed  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255(3):953–962

    Article  CAS  PubMed  Google Scholar 

  • Fathi A, Zahedi M, Torabian S (2017a) Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. J Plant Nutr 40(19):2745–2755

    Article  CAS  Google Scholar 

  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017b) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40(10):1376–1385

    Article  CAS  Google Scholar 

  • Fathy HM, Shaaban SA, Taha LS (2019) Application of some nanoparticles on in vitro growth of Populus alba L. plant under salinity stress. Curr Sci Int 8:47–61

    Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119

    Article  CAS  PubMed  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410(1–2):335–356

    Article  CAS  Google Scholar 

  • Foroutan L, Solouki M, Abdossi V, Fakheri B, Mahdinezhad N, Gholamipour Fard K, Safarzaei A, (2019) The effects of zinc oxide nanoparticles on drought stress in Moringa peregrina populations. Int J Basic Sci Med 4(3):119–127

    Article  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17(12):3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S, Abdoli S (2021) How can biochar-based metal oxide nanocomposites counter salt toxicity in plants? Environ Geochem Health 43(5):2007–2023

    Article  CAS  PubMed  Google Scholar 

  • Ghavam M (2019) Effect of silver nanoparticles on tolerance to drought stress in Thymus daenensis Celak and Thymus vulgaris L. in germination and early growth stages. Environ Stress Crop Sci 12(2):555–566

    Google Scholar 

  • Ghorbani P, Eshghi S, Ershadi A, Shekafandeh A, Razzaghi F (2019) The possible role of foliar application of manganese sulfate on mitigating adverse effects of water stress in grapevine. Commun Soil Sci Plant Anal 50(13):1550–1562

    Article  CAS  Google Scholar 

  • Ghorbanpour M, Mohammadi H, Kariman K (2020) Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano 7(2):443–461

    Article  CAS  Google Scholar 

  • Gohari G, Panahirad S, Sadeghi M, Akbari A, Zareei E, Zahedi SM, Bahrami MK, Fotopoulos V (2021) Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. ‘Sultana’) against salt stress. BMC Plant Biol 21(1):1–15

    Article  Google Scholar 

  • Gohari G, Panahirad S, Sepehri N, Akbari A, Zahedi SM, Jafari H, Dadpour MR, Fotopoulos V (2021) Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environ Sci Pollut Res 28:1–14

    Article  Google Scholar 

  • González-García Y, Cárdenas-Álvarez C, Cadenas-Pliego G, Benavides-Mendoza A, Cabrera-de-la-Fuente M, Sandoval-Rangel A, Valdés-Reyna J, Juárez-Maldonado A (2021) Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants 10(2):217

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafez EM, Osman HS, Gowayed SM, Okasha SA, Omara AE-D, Sami R, El-Monem A, Ahmed M, El-Razek A, Usama A (2021) Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy 11(4):676

    Article  CAS  Google Scholar 

  • Hajizadeh HS, Asadi M, Zahedi SM, Hamzehpour N, Rasouli F, Helvacı M, Alas T (2021) Silicon dioxide-nanoparticle nutrition mitigates salinity in gerbera by modulating ion accumulation and antioxidants. Folia Hortic 33(1):91–105

    Article  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Nahar K, Hossain M, Mahmud JA, Hossen M, Masud AAC, Fujita M (2018) Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31

    Article  Google Scholar 

  • Hashemi S (2019) Effect of nanoparticles on lipid peroxidation in plants. Advances in lipid metabolism. IntechOpen, London

    Google Scholar 

  • Hassan IF, Ajaj R, Gaballah MS, Ogbaga CC, Kalaji HM, Hatterman-Valenti HM, Alam-Eldein SM (2022) Foliar application of nano-silicon improves the physiological and biochemical characteristics of ‘Kalamata’olive subjected to deficit irrigation in a semi-arid climate. Plants 11(12):1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat F, Khanum F, Li J, Iqbal S, Khan U, Javed HU, Razzaq MK, Altaf MA, Peng Y, Ma X (2023) Nanoparticles and their potential role in plant adaptation to abiotic stress in horticultural crops: a review. Sci Hortic 321:112285

    Article  CAS  Google Scholar 

  • Haydar MS, Ghosh S, Mandal P (2021) Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation. J Plant Growth Regul 41:1–21

    Google Scholar 

  • He F-L, Bao A-K, Wang S-M, Jin H-X (2019) NaCl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environ Exp Bot 162:433–443

    Article  CAS  Google Scholar 

  • Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A (2018a) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23(1):178

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Hernández H, Juárez-Maldonado A, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Sánchez-Aspeytia D, González-Morales S (2018b) Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy 8(9):175

    Article  Google Scholar 

  • Hezaveh TA, Pourakbar L, Rahmani F, Alipour H (2019) Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun Soil Sci Plant Anal 50(6):698–715

    Article  CAS  Google Scholar 

  • Hosainzaadeh M (2020) The effect of nano silver on elements of saffron corms under salinity coundition. Appl Biol 32(4):114–128

    Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16(11):26644–26653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein M, Abou-Baker N (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. R Soc Open Sci 5(8):171809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal MN, Rasheed R, Ashraf MY, Ashraf MA, Hussain I (2018) Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Environ Sci Pollut Res 25(24):23883–23896

    Article  CAS  Google Scholar 

  • Iqbal R, Raza MAS, Saleem MF, Khan IH, Zaheer MS, Ahmad S, Haider I, Aslam MU, Toleikiene M (2019) Foliar applied iron and zinc improves the growth, physiological and yield related traits of wheat under drought. Int J Biosci 14:376–387

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jabeen N, Ahmad R, Sultana R, Saleem R, Ambrat, (2013) Investigations on foliar spray of boron and manganese on oil content and concentrations of fatty acids in seeds of sunflower plant raised through saline water irrigation. J Plant Nutr 36(6):1001–1011

    Article  CAS  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H, (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hort Agrobot Cluj 41(1):201–207

    Article  CAS  Google Scholar 

  • Jan AU, Hadi F, Nawaz MA, Rahman K (2017) Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem 116:139–149

    Article  CAS  PubMed  Google Scholar 

  • Johns C (2017) The role of carbon in promoting healthy soils. Anal Paper Future Dir Int 10. https://api.semanticscholar.org/CorpusID:52219811

  • Kandhol N, Jain M, Tripathi DK (2022a) Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiol Plant 174(2):e13665

    Article  CAS  PubMed  Google Scholar 

  • Kandhol N, Singh VP, Wang Y, Chen Z-H, Tripathi DK (2022) Ca2+ sensor-mediated ROS homeostasis: defense without yield penalty. Trends in Plant Sci 27:834–836

    Article  CAS  Google Scholar 

  • Kaphle A, Navya P, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16(1):43–58

    Article  CAS  Google Scholar 

  • Kausar A, Hussain S, Javed T, Zafar S, Anwar S, Hussain S, Zahra N, Saqib M (2023) Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiol Biochem 195:341–350

    Article  PubMed  Google Scholar 

  • Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R (2022) Nanoparticles: the plant saviour under abiotic stresses. Nanomaterials 12(21):3915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalofah A, Kilany M, Migdadi H (2021) Phytostimulatory influence of Comamonas testosteroni and silver nanoparticles on Linum usitatissimum L. under salinity stress. Plants 10(4):790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan R, Gul S, Hamayun M, Shah M, Sayyed A, Ismail H, Gul H (2016) Effect of foliar application of zinc and manganese on growth and some biochemical constituents of Brassica junceae grown under water stress. J Agric Environ Sci 16:984–997

    CAS  Google Scholar 

  • Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M (2019) The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res 26(19):19859–19870

    Article  CAS  Google Scholar 

  • Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L (2019) Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221(1):180–194

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew M (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L). J Exp Bot 62(12):4215–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh A, Panigrahy M, Sahoo PK, Panigrahi KC (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37(6):901–912

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R (2021) Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262:127810

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Gupta A, Chandra H, Singh P, Yadav S (2021) Effects of salt stress on the morphology, anatomy, and gene expression of crop plants. Physiology of salt stress in plants: perception, signalling, omics and tolerance mechanism. Wiley, Hoboken, pp 87–105

    Chapter  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Article  Google Scholar 

  • Leksungnoen N (2012) The relationship between salinity and drought tolerance in turfgrasses and woody species. Utah State University All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 1196. https://doi.org/10.26076/3b92-e727

  • Li Y, Zhang T, Zhang Z, He K (2019) The physiological and biochemical photosynthetic properties of Lycium ruthenicum Murr in response to salinity and drought. Sci Hortic 256:108530

    Article  CAS  Google Scholar 

  • Li P, Zhu Y, Song X, Song F (2020) Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid Pennisetum. Plant Physiol Biochem 155:93–104

    Article  CAS  PubMed  Google Scholar 

  • Linh TM, Mai NC, Hoe PT, Lien LQ, Ban NK, Hien LTT, Chau NH, Van NT (2020) Metal-based nanoparticles enhance drought tolerance in soybean. J Nanomater. https://doi.org/10.1155/2020/4056563

    Article  Google Scholar 

  • Liu J, Li G, Chen L, Gu J, Wu H, Li Z (2021) Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J Nanobiotechnol 19(1):1–16

    Article  Google Scholar 

  • Lotfi R, Abbasi A, Kalaji HM, Eskandari I, Sedghieh V, Khorsandi H, Sadeghian N, Yadav S, Rastogi A (2022) The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: probed by chlorophyll a fluorescence. Plant Physiol Biochem 182:45–54

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Huang M, Huang Y, Corvini PF-X, Ji R, Zhao L (2020) Mn 3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ Sci Nano 7(6):1692–1703

    Article  CAS  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6(1):41–59

    Article  CAS  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:1750

    Article  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30

    Article  Google Scholar 

  • Maghsoudi K, Emam Y, Ashraf M (2016) Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. J Plant Nutr 39(8):1194–1203

    Article  CAS  Google Scholar 

  • Mahdavi Khorami A, Masoud Sinaki J, Amini Dehaghi M, Rezvan S, Damavandi A (2020) Sesame (Sesame indicum L.) biochemical and physiological responses as affected by applying chemical, biological, and nano-fertilizers in field water stress conditions. J Plant Nutr 43(3):456–475

    Article  CAS  Google Scholar 

  • Mahmoud LM, Dutt M, Shalan AM, El-Kady ME, El-Boray MS, Shabana YM, Grosser JW (2020) Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S Afr J Bot 132:155–163

    Article  CAS  Google Scholar 

  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G (2021) Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ 769:145221

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Tiwari D, Tripathi D (2020) Interaction of carbon nanotubes with plant system: a review. Carbon Lett 31:1–10

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185:1–22

    Article  Google Scholar 

  • Mohamed AKS, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63(12):1736–1747

    Article  CAS  Google Scholar 

  • Montazerinezhad S, Solouki M (2019) Effect of iron on gene expression Cm APX in salt stress conditions in Sistan melon landraces. New Cell Mol Biotechnol J 9(34):57–64

    Google Scholar 

  • Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R (2020) Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Hortic 272:109537

    Article  CAS  Google Scholar 

  • Mozafari A-a, Ghaderi N, Havas F, Dedejani S (2019) Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria× ananassa Duch.) under drought and salinity stresses: a study based on in vitro culture. Sci Hortic 256:108601

    Article  CAS  Google Scholar 

  • Mushtaq A, Rizwan S, Jamil N, Ishtiaq T, Irfan S, Ismail T, Malghani MN, Shahwani MN (2019) Influence of silicon sources and controlled release fertilizer on the growth of wheat cultivars of Balochistan under salt stress. Pak J Bot 51(5):1561–1567

    Article  CAS  Google Scholar 

  • Namjoyan S, Rajabi A, Sorooshzadeh A, Agha Alikhani M (2020) Impact of nanosilicon and tebuconazole foliar application on some physiological traits, growth and white sugar yield of sugar beet under drought stress. J Sugar Beet 35(2):157–173

    Google Scholar 

  • Nasiri Dehsorkhi A, Ghanbari A, Varnaseri Ghandali V (2018) Effect of foliar application of chelate iron in common and nanoparticles forms on yield and yield components of Cumin (Cuminum cyminum L.) under drought stress conditions. Iran J Field Crops Res 16(1):229–241

    Google Scholar 

  • Nejatzadeh F (2021) Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon 7(2):e05981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Niu G, Rodriguez D, Mendoza M, Jifon J, Ganjegunte G (2012) Responses of Jatropha curcas to salt and drought stresses. Int J Agron 2012. https://doi.org/10.1155/2012/632026

  • Noaema AH, Alhasany AR (2020) Effect of spraying nano fertilizers of potassium and boron on growth and yield of wheat (Triticum aestivum L.). IOP Conf Ser 1:012012

    Article  Google Scholar 

  • Noman M, Ahmed T, Shahid M, Niazi MBK, Qasim M, Kouadri F, Abdulmajeed AM, Alghanem SM, Ahmad N, Zafar M (2021) Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicol Environ Saf 217:112264

    Article  CAS  PubMed  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, RUIZ-LARA S, Casaretto JA, (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33(12):2191–2208

    Article  CAS  PubMed  Google Scholar 

  • Ors S, Ekinci M, Yildirim E, Sahin U, Turan M, Dursun A (2021) Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. S Afr J Bot 137:335–339

    Article  CAS  Google Scholar 

  • Osman HS, Gowayed SM, Elbagory M, Omara AE-D, El-Monem AMA, El-Razek A, Usama A, Hafez EM (2021) Interactive impacts of beneficial microbes and Si-Zn nanocomposite on growth and productivity of soybean subjected to water deficit under salt-affected soil conditions. Plants 10(7):1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osthoff A, Donà dalle Rose P, Baldauf JA, Piepho H-P, Hochholdinger F (2019) Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genom 20:1–14

    Article  Google Scholar 

  • Ouzounidou G, Ilias I, Giannakoula A, Theoharidou I (2014) Effect of water stress and NaCl triggered changes on yield, physiology, biochemistry of broad bean (Vicia faba) plants and on quality of harvested pods. Biologia 69(8):1010–1017

    Article  CAS  Google Scholar 

  • Ouzounidou G, Giannakoula A, Ilias I, Zamanidis P (2016) Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz J Bot 39(2):531–539

    Article  Google Scholar 

  • Paul K, Pauk J, Kondic-Spika A, Grausgruber H, Allahverdiyev T, Sass L, Vass I (2019) Co-occurrence of mild salinity and drought synergistically enhances biomass and grain retardation in wheat. Front Plant Sci 10:501

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteom 8(12):2676–2686

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019) Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 8(6):151

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinedo-Guerrero ZH, Cadenas-Pliego G, Ortega-Ortiz H, González-Morales S, Benavides-Mendoza A, Valdés-Reyna J, Juárez-Maldonado A (2020) Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agriculture 10(9):367

    Article  CAS  Google Scholar 

  • Raeesi Sadati SY, Jahanbakhsh Godekahriz S, Ebadi A, Sedghi M (2021) Effect of zinc oxide nanoparticles on some biochemical and morphological characteristics of wheat under drought conditions. J Agric Sci Sustaine Prod 31(2):233–250

    Google Scholar 

  • Rahman A, Hossain MS, Mahmud J-A, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 22(3):291–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai-Kalal P, Tomar RS, Jajoo A (2021) Seed nanopriming by silicon oxide improves drought stress alleviation potential in wheat plants. Funct Plant Biol. https://doi.org/10.1071/FP21079

    Article  PubMed  Google Scholar 

  • Rani S, Kumari N, Sharma V (2022) Uptake, translocation, transformation and physiological effects of nanoparticles in plants. Arch Agron Soil Sci 69:1–21

    Google Scholar 

  • Rasaee I, Ghannadnia M, Baghshahi S (2020) Assesment of antibacterial properties of silver nanoparticles biosynthesized using leaf extract of Hyssopus officinalis L. grown under salinity stress. Iran J Med Aromat Plants Res 36(4):691–708

    Google Scholar 

  • Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU (2022) The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: a review. Front Plant Sci 13:976179

    Article  PubMed  PubMed Central  Google Scholar 

  • Reckova S, Tuma J, Dobrev P, Vankova R (2019) Influence of copper on hormone content and selected morphological, physiological and biochemical parameters of hydroponically grown Zea mays plants. Plant Growth Regul 89(2):191–201

    Article  CAS  Google Scholar 

  • Rossi L, Francini A, Minnocci A, Sebastiani L (2015) Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Sci Hortic 192:38–46

    Article  CAS  Google Scholar 

  • Rossi L, Zhang W, Schwab AP, Ma X (2017) Uptake, accumulation, and in planta distribution of coexisting cerium oxide nanoparticles and cadmium in Glycine max (L.) Merr. Environ Sci Technol 51(21):12815–12824

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Article  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):1–19

    Article  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Annales Universitatis Mariae Curie-Sklodowska, sectio C-Biologia 2:39

    Google Scholar 

  • Sabertanha B, Fakheri B, Mahdinezhad N, Alizade Z (2017) Effects of silver nanoparticles elicitor and drought stress on the expression of beta-carotene hydroxylase (bch) gene on the yield of saffron carotenoid (Crocus sativus L.). Crop Biotechnol 7(17):1–13

    Google Scholar 

  • Sabertanha B, Fakheri B, Mehdinezhad N, Alizade Z (2018a) The effect of silver nanoparticles on physiological characteristics of some saffron (Crocus sativus L.) ecotypes of South Khorasan under moderate water deficit stress. Environ Stress Crop Sci 11(3):627–643

    Google Scholar 

  • Sabertanha S, Fakheri BA, Mahdinezhad N, Alizadeh Z (2018b) Water deficit and the effect of silver nanoparticles on morphological traits onsome saffron ecotypes (Crocus sativus L.) in South Khorasan. Saffron Agron Technol 6(4):473–485

    Google Scholar 

  • Sadak MS (2019) Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Natl Res Cent 43(1):1–6

    Article  Google Scholar 

  • Saedi F, Sirousmehr A, Javadi T (2020) Effect of nano-potassium fertilizer on some morpho-physiological characters of peppermint (Mentha piperita L.) under drought stress. J Plant Res (Iran J Biol) 33(1):35–45

    Google Scholar 

  • Sanavi M, Mohammad SA (2018) Effects of iron and manganese nano-chelate foliar application on some qualitative traits of (Vigna Radiata L. Wilczek Parto variety) under water deficit condition. Iran J Field Crop Sci 49(2):61–70

    Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132(2):209–219

    Article  CAS  PubMed  Google Scholar 

  • Saqib M, Akhtar J, Abbas G, Nasim M (2013) Salinity and drought interaction in wheat (Triticum aestivum L.) is affected by the genotype and plant growth stage. Acta physiol Plant 35(9):2761–2768

    Article  CAS  Google Scholar 

  • Schmidt W, Thomine S, Buckhout TJ (2020) Iron nutrition and interactions in plants. Front Plant Sci 10:1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedaghathoor S, Abbasnia Zare SK (2019) Interactive effects of salinity and drought stresses on the growth parameters and nitrogen content of three hedge shrubs. Cogent Environ Sci 5(1):1682106

    Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292

    Article  CAS  PubMed  Google Scholar 

  • Semida WM, Abdelkhalik A, Mohamed G, El-Mageed A, Taia A, El-Mageed A, Shimaa A, Rady MM, Ali EF (2021) Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10(2):421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyed Sharifi R, Khalilzadeh R, Pirzad A, Anwar S (2020) Effects of biofertilizers and nano zinc-iron oxide on yield and physicochemical properties of wheat under water deficit conditions. Commun Soil Sci Plant Anal 51(19):2511–2524

    Article  CAS  Google Scholar 

  • Shahriari A, Omidi H, Mohammadi H, Mohammadi A, Ahmadi K (2019) The effect of carbon nanotubes seed priming on germination and photosynthetic pigmentation of maize hybrids under drought stress. Agroecol J 15(3):1–12

    Google Scholar 

  • Shekhawat GS, Mahawar L, Rajput P, Rajput VD, Minkina T, Singh RK (2021) Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: insights into the biochemical and physiological responses. Plants 10(7):1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaei TR, Salleh MAM, Tabatabaei M, Mobli H, Aghbashlo M, Rashid SA, Tan T (2019) Applications of nanotechnology and carbon nanoparticles in agriculture. Synthesis, technology and applications of carbon nanomaterials. Elsevier, Amsterdam, pp 247–277

    Chapter  Google Scholar 

  • Singh N, Bhatla SC (2016) Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide 53:54–64

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Sillu D, Kumar A, Agnihotri S (2021a) Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree Eucalyptus tereticornis Sm. Environ Sci 8(5):1308–1325

    CAS  Google Scholar 

  • Singh P, Arif Y, Siddiqui H, Sami F, Zaidi R, Azam A, Alam P, Hayat S (2021) Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicol Environ Saf 213:112020

    Article  CAS  PubMed  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  CAS  Google Scholar 

  • Song S-Y, Chen Y, Chen J, Dai X-Y, Zhang W-H (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Souri Z, Khanna K, Karimi N, Ahmad P (2021) Silicon and plants: current knowledge and future prospects. J Plant Growth Regul 40(3):906–925

    Article  CAS  Google Scholar 

  • Sreelakshmi B, Induja S, Adarsh P, Rahul H, Arya S, Aswana S, Haripriya R, Aswathy B, Manoj P, Vishnudasan D (2021) Drought stress amelioration in plants using green synthesised iron oxide nanoparticles. Mater Today 41:723–727

    CAS  Google Scholar 

  • Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X (2020a) Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci 21(3):782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Shahrajabian MH, Huang Q (2020b) Soybean seeds treated with single walled carbon nanotubes (SwCNTs) showed enhanced drought tolerance during germination. Int J Adv Biol Biomed Res 8(1):9–16

    Article  CAS  Google Scholar 

  • Sun L, Song F, Zhu X, Liu S, Liu F, Wang Y, Li X (2021) Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch Agron Soil Sci 67(2):245–259

    Article  CAS  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12(1):1–6

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A (2019) Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere 226:110–122

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, Liu S, Singh VP, Sharma S, Srivastava P, Prasad SM (2018) Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ Sci 5:86

    Article  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57(6):1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, Ashraf I, Sanaullah M, (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

    Article  CAS  PubMed  Google Scholar 

  • Vaghar MS, Sayfzadeh S, Zakerin HR, Kobraee S, Valadabady AR (2021) Effect of foliar application of iron, zinc and manganese nano-chelate on some quantitative and qualitative characteristics of soybean (Glycine max L.) under water deficit stress. Environ Stress Crop Sci 14(3):703–718

    Google Scholar 

  • Van Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen HT, Le HM, Nguyen AT, Dinh NTT, Hoang SA, Van Ha C (2021) Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regulat 41:1–12

    Google Scholar 

  • Vicente MJ, Martínez-Díaz E, Martínez-Sánchez JJ, Franco JA, Bañón S, Conesa E (2020) Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Sci Hortic 270:109433

    Article  CAS  Google Scholar 

  • Wahid I, Kumari S, Ahmad R, Hussain SJ, Alamri S, Siddiqui MH, Khan MIR (2020) Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules 10(11):1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J, Wang R, Bai H, Wang Y, Xu J (2020) Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environ Sci Nano 7(10):2968–2981

    Article  CAS  Google Scholar 

  • Wang W-B, Kim Y-H, Lee H-S, Kim K-Y, Deng X-P, Kwak S-S (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47(7):570–577

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Timmermans J, Chen Q, van Bodegom PM (2022) Monitoring the combined effects of drought and salinity stress on crops using remote sensing. Hydrol Earth Syst Sci Discuss 2022:1–15

    Google Scholar 

  • Yan A, Chen Z (2019) Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci 20(5):1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Xue C, Xiong Y, Meng X, Li B, Shen R, Lan P (2020) Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteom 220:103756

    Article  CAS  Google Scholar 

  • Yasmin H, Mazher J, Azmat A, Nosheen A, Naz R, Hassan MN, Noureldeen A, Ahmad P (2021) Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicol Environ Saf 218:112262

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Medina-Velo IA, Cota-Ruiz K, Moreno-Olivas F, Gardea-Torresdey JL (2019) Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicol Environ Saf 184:109671

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Cota-Ruiz K, Hernández-Viezcas JA, Valdés C, Medina-Velo IA, Turley RS, Peralta-Videa JR, Gardea-Torresdey JL (2020) Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustain Chem Eng 8(3):1427–1436

    Article  Google Scholar 

  • Yue L, Ma C, Zhan X, White JC, Xing B (2017) Molecular mechanisms of maize seedling response to La2 O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ Sci Nano 4(4):843–855

    Article  CAS  Google Scholar 

  • Yusefi M, Shameli K, Ali RR, Pang S-W, Teow S-Y (2020) Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J Mol Struct 1204:127539

    Article  CAS  Google Scholar 

  • Zahedi H, Alipour A (2018) Effect of spraying of iron and manganese nano chelated on yield and yield component of barley (Hordeum vulgare L.) under water deficit stress at different growth stages. Environ Stress Crop Sci 11(4):847–861

    Google Scholar 

  • Zareii FD, Roozbahani A, and Hosnamidi A (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.) Int J Adv Biol Biomed Res 2:150–1159

  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Goatley M, Conner J, Wilkins M, Teshler I, Liu J, Fefer M, Ckurshumova W (2019) Copper chlorophyllin impacts on growth and drought stress tolerance of tomato plants. HortScience 54(12):2195–2201

    Article  CAS  Google Scholar 

  • Zhao G, Zhao Y, Lou W, Su J, Wei S, Yang X, Wang R, Guan R, Pu H, Shen W (2019) Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale 11(21):10511–10523

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar F, Ashraf M (2021) Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2021.01.028

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SH and HAH had the idea for the article and prepared outlines for the manuscript, QA, HAH, FK, and SC carried out the literature search, QA, HAH, AI, and HB wrote the manuscript, and SH and QZ critically revised the manuscript. All the authors have read and approved the manuscript.

Corresponding authors

Correspondence to Qingwen Zhang or Saddam Hussain.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ain, Q.u., Hussain, H.A., Zhang, Q. et al. Deciphering the Role of Nanoparticles in Stimulating Drought and Salinity Tolerance in Plants: Recent Insights and Perspective. J Plant Growth Regul 43, 1605–1630 (2024). https://doi.org/10.1007/s00344-023-11209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11209-3

Keywords

Navigation