Skip to main content

Advertisement

Log in

24-Epibrassinolide-Mediated Mitigation of Cd-Induced Toxicity in Hyperaccumulator – Brassica juncea: Influence on Photosynthesis, Cell Death, Redox, and Elemental Status

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is toxic to plants and other living beings present in the next trophic level. It inhibits growth of the plant. Since Brassica juncea is a hyperaccumulator plant for Cd, its consumption is hazardous to living beings. Hence, it is important to reduce the accumulation of Cd inside the foliage of mustard plants to make it safe for consumption and reduce bio-magnification. 24-Epibrassinolide (EBL) was applied in various doses (10–10, 10–8 or 10–6 M) as a foliar spray at 25–30 days stage of growth on Brassica juncea var. Varuna, growing in Cd (25 or 50 mg Kg−1 of soil) amended soil. The sampling was done at 45 and 60 days after sowing (DAS) to determine photosynthesis, nutrients, antioxidants, cell death, enzymatic activities, reactive oxygen species, carbohydrate, and Cd content. EBL restricted the Cd uptake and translocation of Cd from root to shoot and induced defence responses to protect photosynthetic machinery. Out of the three doses, EBL (10–8 M) proved most effective and the effect was more pronounced against lower concentration (25 mg Kg−1 soil) of Cd which persisted at both the stages of sampling. The study suggests that EBL alleviated the adverse effects generated by Cd on physiology of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PloS one 10(1):e0114571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2005) Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium. Gen Appl Plant Physiol 31(1–2):55–63

    CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29(3):162–190

    Article  CAS  Google Scholar 

  • Bagheri R, Ahmad J, Bashir H, Iqbal M, Qureshi MI (2017) Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination. Protoplasma 254(2):1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. Chlorophyll a fluorescence. Springer, Dordrecht, pp 65–82

    Chapter  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Campbell NA, Reece JB, Mitchell LG (1999) Biology, 5th edn. Addison Wesley Longman, Reading

    Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. https://doi.org/10.1155/2014/752708

    Article  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163(3):319–332

    Article  CAS  PubMed  Google Scholar 

  • Das S, Goswami S, Talukdar AD (2014) A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull Environ Contam Toxic 92(2):169–174. https://doi.org/10.1007/s00128-013-1152-y

    Article  CAS  Google Scholar 

  • Dalio RJD, Pinheiro HP, Sodek L, Haddad CRB (2013) 24-Epibrassinolide restores nitrogen metabolism of pigeon pea under saline stress. Bot Stud 54(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Schiavo FL (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150(1):217–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Rovere F, Piacentini D, Fattorini L, Girardi N, Bellanima D, Falasca G, Altamura MD, Betti C (2022) Brassinosteroids mitigate cadmium effects in arabidopsis root system without any cooperation with nitric oxide. Int J Mol Sci 23(2):825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Dong Y, Chen W, Bai X, Liu F, Wan Y (2019) Effects of exogenous nitric oxide and 24-epibrassinolide on the physiological characteristics of peanut seedlings under cadmium stress. Pedosphere 29(1):45–59

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analyt Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Faraz A, Faizan M, Sami F, Siddiqui H, Hayat S (2019) Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul 39:1–15

    Google Scholar 

  • Fariduddin Q, Hayat S, Ali B, Ahmad A (2006) Effect of 28-homobrassinolide on the nitrate reductase, carbonic anhydrase activities and net photosynthetic rate in Vigna radiata. Acta Bot Croatica 65(1):19–23

    Google Scholar 

  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2013) Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiol Plant 35(7):2037–2053

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58(1):9–17

    Article  CAS  Google Scholar 

  • Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54(382):585–593

    Article  CAS  PubMed  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29(10):1956–1969

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulphur. Plant Signal Behav 6(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytorem 17(6):583–588

    Article  CAS  Google Scholar 

  • Ha Y, Shang Y, Nam KH (2016) Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J Exp Bot 67(22):6297–6308. https://doi.org/10.1093/jxb/erw385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Farhanghi F (2010) Remobilization of boron, photosynthesis, phenolic metabolism and anti-oxidant defense capacity in boron-deficient turnip (Brassica rapa L.) plants. Soil Sci Plant Nutr 56(3):427–437

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60(1):33–41

    Article  CAS  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19(3):325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Khalique G, Wani AS, Alyemeni MN, Ahmad A (2014) Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat. Int J Biol Macro 64:130–136

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: IKinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21(2):125–131

    Article  CAS  PubMed  Google Scholar 

  • Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain M, Pal M, Gupta P, Gadre R (2007) Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: role of 2-oxoglutarate. Indian J Exp Biol 45:385–389

    CAS  PubMed  Google Scholar 

  • Júnior WV, de Oliveira Neto CF, Santos Filho BGD, do Amarante, CB, Cruz ED, Okumura RS, Barbosa VC, Palheta de Sousa DJ, Teixeira JSS, Botelho ADS (2019) Effect of cadmium on young plants of Virola surinamensis. AoB Plants 11(3):plz022

    Article  Google Scholar 

  • Kabir AH, Rahman MM, Das U, Sarkar U, Roy NC, Reza MA, Talukder MR, Uddin MA (2019) Reduction of cadmium toxicity in wheat through plasma technology. PLoS ONE 14(4):e0214509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor D, Bhardwaj S, Gautam S, Rattan A, Bhardwaj R, Sharma A (2022) Brassinosteroids in plant nutrition and heavy metal tolerance. Brassinosteroids in plant developmental biology and stress tolerance. Academic Press, London, pp 217–235

    Chapter  Google Scholar 

  • Kaur G, Asthir BJBP (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59(4):609–619

    Article  CAS  Google Scholar 

  • Kaur N, Sharma I, Kirat K, Pati PK (2016) Detection of reactive oxygen species in Oryza sativa L.(rice). Bio Protoc 6(24):e2061

    Article  Google Scholar 

  • Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KH, Ahmad P (2018a) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Kaur R, Yadav P, Thukral AK, Sharma A, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018b) Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. J Plant Growth Regul 37(1):286–299

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, Khripach NB (2003) New practical aspects of brassinosteroids and results of their ten-year agricultural use in Russia and Belarus. brassinosteroids. Springer, Dordrecht, pp 189–230

    Chapter  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prasad MNV, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89(9):1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aqua Toxicol 79(3):278–287

    Article  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Mahajan P, Kaushal J (2018) Role of phytoremediation in reducing cadmium toxicity in soil and water. J Toxicol 2018:1–6

    Article  Google Scholar 

  • Majeau N, Coleman JR (1994) Correlation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol 104(4):1393–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants: not only stress. Plant Signal Behav 4(11):1016–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Mysliwa-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in heavy metal stressed plants. Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Berlin Heidelberg, pp 146–181

    Chapter  Google Scholar 

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139(2):487–492

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AA, De Queiroz MEL, De Oliveira AF, Neves AA, Heleno FF, Zambolim L, Freitas JF, Morais EHC (2017) Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. J Environ Sci Health B 52(12):850–857

    Article  CAS  PubMed  Google Scholar 

  • Saeidnejad AH, Mardani H, Naghibolghora M (2012) Protective effects of salicylic acid on physiological parameters and antioxidants response in maize seedlings under salinity stress. J Appl Environ Biol Sci 2(8):364–373

    Google Scholar 

  • Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R (2018) The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. Int J Mol Sci 19(9):2506

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos LR, Batista BL, Lobato AKS (2018) Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica 56(2):591–605

    Article  CAS  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52(8):712–722

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui H, Ahmed KBM, Hayat S (2018a) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiol Biochem 129:198–212

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui H, Hayat S, Bajguz A (2018b) Regulation of photosynthesis by brassinosteroids in plants. Acta Physiol Plant 40(3):59

    Article  Google Scholar 

  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018c) 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. S Afr J Bot 118:120–128

    Article  CAS  Google Scholar 

  • Siddiqui H, Ahmed KB, Sami F, Hayat S (2020) Phytoremediation of cadmium contaminated soil using Brassica juncea: influence on PSII activity, leaf gaseous exchange, carbohydrate metabolism, redox and elemental status. Bull Environ Contam Toxicol 105(3):411–421. https://doi.org/10.1007/s00128-020-02929-3

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui H, Sami F, Bajguz A, Hayat S (2021) Glucose escalates PSII activity, dynamics between anabolic and catabolic pathways, redox and elemental status to promote the growth of Brassica juncea. South African J Bot 137:68–84. https://doi.org/10.1016/j.sajb.2020.09.041

    Article  CAS  Google Scholar 

  • Singh P, Siddiqui H, Sami F, Arif Y, Bajguz A, Hayat S (2020) Cadmium: a threatening agent for plants. Plant responses to soil pollution. Springer, Singapore, pp 59–88

    Chapter  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Stewart GR (1990) Effect of potassium levels on the stomatal behavior of the hemi-parasite Striga hermonthica. Plant Physiol 94(3):1472–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava HS (1980) Regulation of nitrate reductase activity in higher plants. Phytochemistry 19(5):725–733

    Article  CAS  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22(6):583–621

    Article  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63(3):293–298

    Article  CAS  Google Scholar 

  • Strasburger E (1998) Lehrbuch der Botanik, 34th edn. Fischer, Stuttgart, p 310

    Google Scholar 

  • Sun Z, Chen J (2018) Risk assessment of potentially toxic elements (PTEs) pollution at a rural industrial wasteland in an abandoned metallurgy factory in North China. Int J Environ Res Public Health 15(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun S, Li M, Zuo J, Jiang W, Liu D (2015) Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirbyste-Agriculture 102(2):193–200

    Article  Google Scholar 

  • Sung CY, Park CB (2018) The effect of site-and landscape-scale factors on lead contamination of leafy vegetables grown in urban gardens. Landsc Urban Plan 177:38–46

    Article  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer associates publishers, Sunderland, pp 109–110

    Google Scholar 

  • Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chai-Arree W, Pankean P, Suksamrarn A (2015) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53(2):312–320

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waisi HK, Petković AZ, Nikolić BR, Janković BŽ, Raičević VB, Lalević BT, Giba ZS (2017) Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids. Hem Ind 71(3):201–209

    Article  Google Scholar 

  • Wani AS, Tahir I, Ahmad SS, Dar RA, Nisar S (2017) Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci Hortic 225:48–55

    Article  CAS  Google Scholar 

  • Wu GL, Cui J, Tao L, Yang H (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicol 19:124–132. https://doi.org/10.1007/s10646-009-0396-0

    Article  CAS  Google Scholar 

  • Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230(6):1185

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2011) Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Saf 129:25–34

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Khan TA, Faizan M, Faraz A (2019) Interplay between antioxidant enzymes and brassinosteroids in control of plant development and stress tolerance. Brassinosteroids: plant growth and development. Springer, Singapore, pp 323–348

    Chapter  Google Scholar 

  • Yusuf M, Khan MTA, Faizan M, Khalil R, Qazi F (2022) Role of brassinosteroids and its cross talk with other phytohormone in plant responses to heavy metal stress. Brassinosteroids signalling. Springer, Singapore, pp 179–201

    Chapter  Google Scholar 

  • Zulfugarov IS, Tovuu A, Eu YJ, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon YH, An G, Jansson S, Lee CH (2014) Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biol 14(1):242

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K (2019) Sources of soil pollution by heavy metals and their accumulation in vegetables: a review. Water Air Soil Pollut 230(7):164

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the University Grants Commission, India for providing funds in the form of non-net fellowship (15PHDBT003) to the first author to carry out this experimental work.

Author information

Authors and Affiliations

Authors

Contributions

HS performed the experiments and analyzed the data of the experiments. KBMA helped with the Junior-PAM and microscopy studies. SH and PA helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shamsul Hayat.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Anket Sharma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, H., Ahmed, K.B.M., Alam, P. et al. 24-Epibrassinolide-Mediated Mitigation of Cd-Induced Toxicity in Hyperaccumulator – Brassica juncea: Influence on Photosynthesis, Cell Death, Redox, and Elemental Status. J Plant Growth Regul 42, 2646–2661 (2023). https://doi.org/10.1007/s00344-022-10734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10734-x

Keywords

Navigation