Skip to main content
Log in

Physiological and Biochemical Mechanisms Preventing Cd Toxicity in the New Hyperaccumulator Abelmoschus manihot

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg−1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg−1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg−1 and reached 126.17, 185.26 and 210.24 mg kg−1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg−1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg−1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg−1). The ROS production (O2 , H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaribe FO, Agamuthu P (2015) Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecol Eng 83:513–520

    Article  Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamidegels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69

    Article  CAS  Google Scholar 

  • Cao XD, Ma LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Zhou QX, Chao L (2007) Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ Geol 51:1043–1048

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  PubMed  CAS  Google Scholar 

  • Fan LR, Song JQ, Bai WB, Wang SP, Zeng M, Li XM, Zhou Y, Li HF, Lu HW (2016) Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil. Sci Rep. https://doi.org/10.1038/srep21027

    Article  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Barón M, Bota J (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). J Exp Bot 60:2361–2377

    Article  PubMed  CAS  Google Scholar 

  • Ha TT, Burwell ST, Goodwin ML, Noeker JA, Heggland SJ (2016) Pleiotropic roles of Ca2+/calmodulin-dependent pathways in regulating cadmium-induced toxicity in human osteoblast-like cell lines. Toxicol Lett 260:18–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthès V, Isaure MP, Llorens I, Schat H, Sarreta G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65

    Article  CAS  Google Scholar 

  • Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Liu Z, Chen W, Ye Y, Yu S, He X (2015) Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica thunb. J Plant Growth Regul 34:13–21

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    Article  CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woźny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable-a remobilization can occur. Environ Pollut 158, 325–338

    Article  PubMed  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu JN, Zhou QX, Sun T, Mad LQ, Wang S (2008) Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. J Hazard Mat 15:261–267

    Article  CAS  Google Scholar 

  • Liu J, Shang WW, Zhang XH, Zhu YN, Yu K (2014) Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species. J Hazard Mat 267:136–141

    Article  CAS  Google Scholar 

  • Liu DX, Li YM, Ma JH, Li C, Chen X (2016) Heavy Metal Pollution in Urban Soil from 1994 to 2012 in Kaifeng City, China. Water Air Soil Pollut 227:154

    Article  CAS  Google Scholar 

  • Lu SG, Bai SQ (2010) Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: relationship with different land uses. Environ Earth Sci 60:1481–1490

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  PubMed  CAS  Google Scholar 

  • Mahar A, Wang P, Alia A, Awasthic MK, Lahori AH, Wang Q, Li RH, Zhang ZQ (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  PubMed  CAS  Google Scholar 

  • Mesnoua M, Mateos-Naranjo E, Barcia-Piedras JM, Pérez-Romero JA, Lotmani B, Redondo-Gómez S (2016) Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiol Biochem 2016:30–38

    Article  CAS  Google Scholar 

  • Mingorance MD, Valdés B, Oliva SR (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520

    Article  PubMed  CAS  Google Scholar 

  • Pan XX, Du LY, Tao JH, Jiang S, Qian DW, Duan JA (2017) Dynamic changes of flavonoids in Abelmoschus manihot different organs at different growth periods by UPLC–MS/MS. J Chromatogr B 1059:21–26

  • Pereira MP, Rodrigues LCA, Correa FF, Castro EM, Ribeiro FJ, Pereira VE (2016) Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees 30:807–814

    Article  CAS  Google Scholar 

  • Pérez-Romero JA, Redondo-Gómez S, Mateos-Naranjo E (2016) Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiol Biochem 109:103–113

    Article  PubMed  CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mat 184:299–307

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sárvári É, Solti Á, Basa B, Mészáros I, Lévai L, Fodor F (2011) Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar (Populus jacquemontiana var. glauca cv. Kopeczkii). Plant Physiol Biochem 49:499–505

    Article  PubMed  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    Article  PubMed  CAS  Google Scholar 

  • Sun YB, Zhou QX, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mat 161:808–814

    Article  CAS  Google Scholar 

  • Sun RL, Jin CX, Zhou QX (2010a) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell. a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul 61:67–74

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Xie XK, Liu R (2010b) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mat 174:455–462

    Article  CAS  Google Scholar 

  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activated oxygen metabolism and lipid peroxidation insenescing soybean leaves. J Plant Physiol 121:453–461

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants. Plant Sci 151:59–66

  • Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR, Shi TH, Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87

    Article  PubMed  CAS  Google Scholar 

  • Zhang SR, Chen MY, Li T, Xu XX, Deng LJ (2010) A newly found cadmium accumulator—Malva sinensis Cavan. J Hazard Mat 173:705–709

    Article  CAS  Google Scholar 

  • Zhang XF, Xia HP, Li ZA, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mat 189:414–419

    Article  CAS  Google Scholar 

  • Zhang SR, Lin HC, Deng LJ, Gong GS, Jia YX, Xua XX, Li T, Li Y, Chen H (2013) Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol Eng 51:133–139

    Article  Google Scholar 

  • Zheng X, Liu ZH, Li S, Wang LL, Lv JJ, Li JS, Ma XM, Fan L, Qian F (2016) Identification and characterization of a cytotoxic polysaccharide from the flower of Abelmoschus manihot. Int J Biol Macromol 82:284–290

    Article  PubMed  CAS  Google Scholar 

  • Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745

    Article  CAS  Google Scholar 

  • Zouari M, Ahmed CB, Zorrig W, Elloumi N, Rabhi M, Delmail D, Rouina BB, Labrousse P, Abdallah FB (2016) Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity,water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicol Environ Saf 128:100–108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored partial by the Natural Science Foundation of China (31670622). The authors are also grateful to the editor and two anonymous reviewers for their comments and suggestions on an earlier manuscript. This manuscript has not been published or presented elsewhere in part or in entirety, and is not under consideration by another journal. The study design was approved by the appropriate ethics review boards. All the authors have approved the manuscript and agree with submission to your esteemed journal. There are no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhi Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Luo, Q., Zhao, Y. et al. Physiological and Biochemical Mechanisms Preventing Cd Toxicity in the New Hyperaccumulator Abelmoschus manihot . J Plant Growth Regul 37, 709–718 (2018). https://doi.org/10.1007/s00344-017-9765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9765-8

Keywords

Navigation