Skip to main content
Log in

Semisynthetic Triterpenes Derived from Euphorbia officinarum as Plant Growth Promoters and Inducers of Disease Resistance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This study evaluated the effect of application of the semisynthetic triterpenes 3β-acetoxy-norlup-20-one (F4) and 3-chloro-4α,14α-dimethyl-5α-cholest-8-ene (F6) triterpene derivatives from Euphorbia officinarum on the growth of tomato seedlings under normal conditions and when challenged with the pathogens Verticillium dahliae and Agrobacterium tumefaciens. Foliar spray of F4 and F6 significantly improved growth rate, fresh weight, dry weight, and leaf area. In addition, they enhanced several physiological parameters including photosynthetic pigments, proline content, and nitrate reductase activity. Moreover, they induced H2O2 accumulation and increased the activity of several antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase. They also enhanced disease resistance against V. dahliae and A. tumefaciens. These results suggest that the two semisynthetic triterpenes represent new plant growth regulators and inducers of plant disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Ali SS, Kumar GB, Khan M, Doohan FM (2013) Brassinosteroid enhances resistance to Fusarium diseases of barley. Phytopathology 103:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Altmann T (1998) A tale of dwarfs and drugs: brassinosteroids to the rescue. Trends Genet 14:490–495

    Article  CAS  PubMed  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Al-Munqadhi BMA, Sakran AM, Ali HM, Basalah MO (2012) Influence of plant growth regulators on growth performance and photosynthetic pigments status of Eruca sativa Mill. J Med Plants Res 6:1948–1954

    CAS  Google Scholar 

  • Alyemeni MN, Al-Quwaiz SM (2016) Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiat. Saudi J Biol Sci 23:698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andresen M, Cedergreen N (2010) Plant growth is stimulated by tea seed extract: a new natural growth regulator? HortScience 45:1848–1853

    Article  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  Google Scholar 

  • Basra AS (2000) Plant growth regulators in agriculture and horticulture: their role and commercial uses. Harworth Press, Philadelphia

    Google Scholar 

  • Bates LS, Waldren RD, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bednarczyk-Cwynar B, Zaprutko L (2015) Recent advances in synthesis and biological activity of triterpenic acylated oximes. Phytochem Rev 14:203–231

    Article  CAS  PubMed  Google Scholar 

  • Benharref A, Lavergne JP (1985) Triterpenes issus des latex des euphorbes cactoides marocaines E. Resinifera, E. Echinus et E. Officinarum: Isolement,étude comparative par RMN 13C des quatres classes tetracycliques, eupho-lanostane, elemolanostane, lanostane et nor-31 lanostane. Bull Soc Chim Fr 5:965–972

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cheng SY, Wang CM, Cheng HL, Chen HJ, Hsu YM, Lin YC, Chou CH (2013) Biological activity of oleanane triterpene derivatives obtained by chemical derivatization. Molecules 18:13003–13019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherrab M, Bennani A, Charest PM, Serrhini MN (2002) Pathogenecity and vegetative compatibility of Verticillium dahlia Kleb. Isolates from olives in Morocco. J Phytopathol 150:703–709

    Article  Google Scholar 

  • Chinchilla D, Zipfal C, Robatzek S, Kemmerling B, Nurnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BGK1 initiates plant defence. Nature 448:497–500

    Article  CAS  Google Scholar 

  • Crozier A, Clifford MN, Asihara H, Humphrey AJ, Beale MH (2006) Terpenes. In: Crozier A, Clifford MN, Asihara H (eds) Plant secondary metabolites. Blackwell Publishing Ltd, Oxford, pp 47–101

    Chapter  Google Scholar 

  • Dalio RJD, Pinheiro HP, Sodek L, Haddad CRB (2013) 24-epibrassinolide restores nitrogen metabolism of pigeon pea under saline stress. Bot Stud 54:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH (2016) Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Sci Rep 6:20579. https://doi.org/10.1038/srep20579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. https://doi.org/10.1186/1471-2229-10-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23:394–411

    Article  CAS  PubMed  Google Scholar 

  • El-sherbeny MR, Da Silva JAT (2013) Treatment with proline and tyrosine affect the growth and yield of beetroot and some pigments in beetroot leaves. J Hortic Res 21:95–99

    Article  CAS  Google Scholar 

  • El-shraiy AM, Hegazi AM (2009) Effect of acetyl salicylic acid, indole-3-butyric acid and gebberillic acid on plant growth and yield of pea (Pisum sativum L.). Aust J Basic Appl Sci 3:3514–3523

    CAS  Google Scholar 

  • Erdal S (2012) Alleviation of salt stress in wheat seedlings by mammalian sex hormones. J Sci Food Agric 92:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Faize L, Ishizaka M, Ishii H (2004) Expression of potential defense responses of Asian and European pears to infection with Venturia nashicola. Physiol Mol Plant Pathol 64:319–330

    Article  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Petri C, Barba-Espin G, Díaz-Vivancos P, Clemente-Moreno MJ, Alburquerque N, Hernandez JA (2012) Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu,Zn-superoxide dismutase. Plant Pathol 5:858–866

    Article  CAS  Google Scholar 

  • Faize M, Faize L, Petri C, Barba Espin G, Diaz-Vivancos P, Clemente Moreno MJ, Koussa T, Rifai LA, Burgos L, Hernandez JA (2013) Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. J Plant Physiol 170:625–632

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Hayat S, Ali B, Ahmad A (2006) Effect of 28-homobrassinolide on nitrate reductase, carbonic anhydrase activities and net photosynthetic rate in Vigna radiata. Acta Bot Croat 65:19–23

    Google Scholar 

  • Garg N, Singla R (2005) Nitrate reductase activity in roots and leaves of chickpea cultivars under salt stress. Span J Agric Res 3:248–252

    Article  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 186:1291–1301

    Article  Google Scholar 

  • Huang LR, Luo H, Yang XS, Chen L, Zhang JX, Wang DP, Hao XJ (2014) Enhancement of antibacterial and antitumor activities of pentacyclic triterpenes by introducing exocyclic α,β-unsaturated ketones moiety in ring A. Med Chem Res 23:4631–4641

    Article  CAS  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeczko A, Scoczowski A (2005) Mammalian sex hormones in plants. Folia Histochem Cytobiol 43:71–79

    CAS  PubMed  Google Scholar 

  • Kagali S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  Google Scholar 

  • Kemen AC, Honkanen S, Melton RE, Findlay KC, Migford ST, Hayashi K, Haralampidis K, Rosser SJ, Osbourn A (2014) Investigation of triterpene synthesis and regulation in oats reveals a role of β-amyrin in determining root epidermal cell patterning. Proc Natl Acad Sci USA 111:8679–8684

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homoeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  Google Scholar 

  • Kishor PBK, Hima Kumari P, Sunita MSL, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544. https://doi.org/10.3389/fpls.2015.00544

    Article  Google Scholar 

  • Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA (2014) Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot 65:3311–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lobato AKS, Gonçalves-Vidigal MC, Vidigal Filho PS, Andrade CAB, Kvitschal MV, Bonato CM (2010) Relationships between leaf pigments and photosynthesis in common bean plants infected by anthracnose. New Zeal J Crop Hort 38:29–37

    Article  CAS  Google Scholar 

  • Maia CF, Serrao da Silva BR, Lobato AKS (2018) Brassinosteroids positively modulates growth: physiological, biochemical and anatomical evidence using tomato genotypes contrasting to dwarfism. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9802-2

    Article  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants not only stress. Plant Signal Behav 4:1016–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moerschbacher B, Heck B, Kogel KH, Obs O, Reisener H (1986) An elicitor of the hypersensitive lignification response in wheat leaves isolated from the rust fungus Puccinia graminis f. sp. tritici. II. Induction of enzymes correlated with the biosynthesis of lignin. Z Naturforsch 41c:839–844

    Article  Google Scholar 

  • Morinaka Y, Sakamoto T, Yoshiaki I, Masakazu A, Hidemi K, Motoyuki A, Makoto M (2006) Morphological alteration caused by Brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 14:924–931

    Article  CAS  Google Scholar 

  • Moses T, Papadopoulou K, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  CAS  PubMed  Google Scholar 

  • Ohara S, Ohira T (2003) Plant growth regulation effect of the triterpenoid saponin. J Wood Sci 49:59–69

    Article  CAS  Google Scholar 

  • Pipattanawong N, Fujishige N, Yamane K, Ogata RC (1996) Effect of brassinosteroid on vegetative and reproductive growth in two day-neutral strawberries. J Jpn Soc Hortic Sci 65:651–654

    Article  CAS  Google Scholar 

  • Pociecha E, Dziurka M, Waligorski P, Krepski T, Janeczko T (2017) 24-Epibrassinolide pre-treatment modifies cold induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivar-dependent manner. J Plant Growth Regul 36:618–628

    Article  CAS  Google Scholar 

  • Saha S, Walia S, Kumar J, Parma BS (2010) Triterpenic saponin as regulator of plant growth. J Appl Bot Food Qual 83:189–195

    CAS  Google Scholar 

  • Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisturestress conditions of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Sarkar PK, Haque MS, Karim MA (2002) Effects of GA3 and IAA and their frequency of application on morphology, yield contributing characters and yield of soybean. J Agric Sci 1:119–122

    Google Scholar 

  • Silveira JAG, Matos JCS, Ceccato VM, Sampaio AH (1998) Costa RCL, Induction of reductase nitrate activity and nitrogen fixation in two Phaseolus species in relation to exogenous nitrate level. Physiol Mol Biol Plants 4:19–26

    Google Scholar 

  • Smaili A, Mazoir N, Rifai LA, Koussa T, Makroum K, Beharref A, Faize L, Alburquerque N, Burgos L, Belfaiza M, Faize M (2017) Antimicrobial activity of two semisynthetic triterpene derivatives from Euphorbia officinarum latex against fungal and bacterial phytopathogens. Nat Prod Commun 12:331–336

    PubMed  Google Scholar 

  • Srivastava HS (1980) Regulation of nitrate reductase activity in higher plants. Phytochemistry 17:725–733

    Article  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-arree W, Pankean P, Homvisasevongsa S, Suksamram A (2015) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34:320–331

    Article  CAS  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Homvisasevongsa S, Suksamram A, Yamagami A, Nakano T, Asami T (2017) Characterisation of synthetic ecdysteroid analogues as functional micmics of brassinosteroids in plant growth. J Steroid Biochem Mol Biol 172:1–8

    Article  CAS  PubMed  Google Scholar 

  • Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015) The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167. https://doi.org/10.3389/fpls.2015.00167

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in Brassinosteroid-induced stress tolerance in Cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroid action’s: from signal transduction to plant development. Mol Plant 4:588–600

    Article  CAS  Google Scholar 

  • Zine H, Rifai LA, Koussa T, Bentiss F, Guesmi S, Laachir A, Makroum K, Belfaiza M, Faize M (2017) The mononuclear nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]nickel(II) protects tomato from Verticillium dahlia by inhibiting fungal growth and activating plant defences. Pest Manag Sci 73:188–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the University Chouaib Doukkali El Jadida (Morocco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Faize.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1974 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaili, A., Rifai, L.A., Mazoir, N. et al. Semisynthetic Triterpenes Derived from Euphorbia officinarum as Plant Growth Promoters and Inducers of Disease Resistance. J Plant Growth Regul 38, 262–272 (2019). https://doi.org/10.1007/s00344-018-9838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9838-3

Keywords

Navigation