Skip to main content
Log in

The Involvement of Cytokinin Oxidase/Dehydrogenase and Zeatin Reductase in Regulation of Cytokinin Levels in Pea (Pisum sativum L.) Leaves

  • Original Article
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cytokinin metabolism in plants is very complex. More than 20 cytokinins bearing isoprenoid and aromatic side chains were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) in pea (Pisum sativum L. cv. Gotik) leaves, indicating diverse metabolic conversions of primary products of cytokinin biosynthesis. To determine the potential involvement of two enzymes metabolizing cytokinins, cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) and zeatin reductase (ZRED, EC 1.3.1.69), in the control of endogenous cytokinin levels, their in vitro activities were investigated in relation to the uptake and metabolism of [2−3H]trans-zeatin ([2−3H]Z) in shoot explants of pea. Trans-zeatin 9-riboside, trans-zeatin 9-riboside-5′-monophosphate and cytokinin degradation products adenine and adenosine were detected as predominant [2−3H]Z metabolites during 2, 5, 8, and 24 h incubation. Increasing formation of adenine and adenosine indicated extensive degradation of [2−3H]Z by CKX. High CKX activity was confirmed in protein preparations from pea leaves, stems, and roots by in vitro assays. Inhibition of CKX by dithiothreitol (15 mM) in the enzyme assays revealed relatively high activity of ZRED catalyzing conversion of Z to dihydrozeatin (DHZ) and evidently competing for the same substrate cytokinin (Z) in protein preparations from pea leaves, but not from pea roots and stems. The conversion of Z to DHZ by pea leaf enzyme was NADPH dependent and was significantly inhibited or completely suppressed in vitro by diethyldithiocarbamic acid (DIECA; 10 mM). Relations of CKX and ZRED in the control of cytokinin levels in pea leaves with respect to their potential role in establishment and maintenance of cytokinin homeostasis in plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Armstrong DJ. 1994. “Cytokinin oxidase and the regulation of cytokinin degradation” In: Mok DWS, Mok MC (eds.). Cytokinins: Chemistry, Activity, and Function. Boca Raton, FL, USA, CRC Press, pp 139–154

    Google Scholar 

  • Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, and others. 2001. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol 125:378–386

    Article  PubMed  CAS  Google Scholar 

  • Bilyeu KD, Laskey JG, Morris RO. 2003. Dynamics of expression and distribution of cytokinin oxidase/dehydrogenase in developing maize kernels. J Plant Growth Regul 39:195–203

    Article  CAS  Google Scholar 

  • Boiten H, Azmi A, Dillen W, De Schepper S, Debergh P, and others. 2004. The Rg-1 encoded regeneration capacity of tomato is not related to an altered cytokinin homeostasis. New Phytol 161:761–771

    Article  CAS  Google Scholar 

  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chatfield JM, Armstrong DJ. 1986. Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol 80:493–499

    CAS  PubMed  Google Scholar 

  • Corbesier L, Prinsen E, Jacqmard A, Lejeune P, Van Onckelen H, and others. 2003. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J Exp Bot 54:2511–2517

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ, Horgan R, Heald JK, McGaw BA. 1986. Endogenous cytokinins in vegetative shoots of peas. J Plant Growth Regul 4:311–323

    CAS  Google Scholar 

  • Dobrev PI, Kamínek M. 2002. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    PubMed  Google Scholar 

  • Dobrev P, Motyka V, Gaudinová A, Malbeck J, Trávníčková A, and others. 2002. Transient accumulation of cis- and trans-zeatin type cytokinins and its relation to cytokinin oxidase activity during cell cycle of synchronized tobacco BY-2 cells. Plant Physiol Biochem 40:333–337

    Article  CAS  Google Scholar 

  • Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA. 1998. Cis-isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Emery RJN, Ma Q, Atkins CA. 2000. The forms and sources of cytokinins in developing white lupin seeds and fruits. Plant Physiol 123:1593–1604

    Article  PubMed  CAS  Google Scholar 

  • Galuszka P, Frébort I, Šebela M, Sauer P, Jacobsen S, and others. 2001. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem 268:450–461

    Article  PubMed  CAS  Google Scholar 

  • Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, and others. 2004. Cytokinin oxidase/dehydrogenase genes in barley and wheat. Cloning and heterologous expression. Eur J Biochem 271:3990–4002

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Kieber JJ. 2002. Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362

    Article  PubMed  CAS  Google Scholar 

  • Houba-Hérin N, Pethe C, d´Alayer J, Laloue M. 1999. Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626

    PubMed  Google Scholar 

  • Jäger AK, Stirk WA, Van Staden J. 1997. Cytokinin oxidase activity in habituated and non-habituated soybean callus. Plant Growth Regul 22:203–206

    Google Scholar 

  • Jameson PE. 1994. “Cytokinin metabolism and compartmentation” In: Mok DWS, Mok MC, (eds.), Cytokinins: Chemistry, Activity, and Function, Boca Raton, FL, USA, CRC Press, pp 113–128

    Google Scholar 

  • Jones RJ, Schreiber BMN. 1997. Role and function of cytokinin oxidase in plants. J Plant Growth Regul 23:123–134

    CAS  Google Scholar 

  • Kamínek M, Armstrong DJ. 1990. Genotypic variation in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol 93:1530–1538

    PubMed  Google Scholar 

  • Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, and others. 2000. Purine cytokinins: a proposal of abbreviations. J Plant Growth Regul 32:253–256

    Google Scholar 

  • Kamínek M, Motyka V, Vaňková R. 1997. Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700

    Google Scholar 

  • Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, and others. 2004. Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054

    PubMed  CAS  Google Scholar 

  • King RA, Van Staden J. 1987. The metabolism of N6-(Δ2-isopentenyl)[3H]adenine by isolated organs of Pisum sativum. J Plant Physiol 131:181–190

    CAS  Google Scholar 

  • King RA, Van Staden J. 1990. The metabolism of N62-isopentenyl)[3H]adenine by different stem sections of Pisum sativum. J Plant Growth Regul 9:237–246

    Article  CAS  Google Scholar 

  • Letham DS, Palni LMS. 1983. The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197

    Article  CAS  Google Scholar 

  • Martin RC, Mok MC, Habben JE, Mok DWS. 2001. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98:5922–5926

    PubMed  CAS  Google Scholar 

  • Martin RC, Mok MC, Shaw G, Mok DWS. 1989. An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryos. Plant Physiol 90:1630–1635

    CAS  PubMed  Google Scholar 

  • Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, and others. 2004. Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. J Exp Bot 55:2549–2557

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Mok MC. 2001. Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–119

    Article  PubMed  CAS  Google Scholar 

  • DWS, Mok MC, Shaw G, Dixon SC, Martin RC. 1990. “Genetic differences in the enzymatic regulation of zeatin metabolism in Phaseolus embryos” In: Pharis RP, Rood SB (eds.), Plant Growth Substances 1988. Berlin, Germany, Springer-Verlag, pp 267–274

    Google Scholar 

  • Mok MC. 1994. “Cytokinins and plant development—an overview” In: Mok DWS, Mok MC (eds.), Cytokinins: Chemistry, Activity, and Function. Boca Raton, FL, USA, CRC Press, pp 155–166

    Google Scholar 

  • Morris RO, Bilyeu KD, Laskey JG, Cheikh NN. 1999. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333

    Article  PubMed  CAS  Google Scholar 

  • Motyka V, Faiss M, Strnad M, Kamínek M, Schmülling T. 1996. Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol 112:1035–1043

    PubMed  CAS  Google Scholar 

  • Motyka V, Kamínek M. 1994. Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (Nicotiana tabacum L.). J Plant Growth Regul 13:1–9

    Article  CAS  Google Scholar 

  • Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, and others. 2003. Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21

    Article  CAS  Google Scholar 

  • Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, and others. 2003. Quantitative analysis of cytokinins in plants by liquid chromatography—single-quadrupole mass spectrometry. Anal Chim Acta 480:207–218

    Google Scholar 

  • Pačes V, Kamínek M. 1976. Effect of ribosylzeatin isomers on the enzymatic degradation of N6-(Δ2-isopentenyl)adenosine. Nucleic Acids Res 3:2309–2314

    PubMed  Google Scholar 

  • Palni LMS, Palmer MV, Letham DS. 1984. The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta 160:242–249

    Article  CAS  Google Scholar 

  • Parker CW, Letham DS, Gollnow BI, Summons RE, Duke CC, others. 1978. Regulators of cell division in plant tissues. XXV. Metabolism of zeatin by lupin seedlings. Planta 142:239–251

    Article  CAS  Google Scholar 

  • Sakakibara H. 2004. “Cytokinin biosynthesis and metabolism” In: Davies PJ (ed.), Plant Hormones. Biosynthesis, Signal Transduction, Action! Dordrecht, The Netherlands, Kluwer Academic Publishers, pp 95–114

    Google Scholar 

  • Schmülling T. 2002. New insights into the functions of cytokinins in plant development. J Plant Growth Regul 21:40–49

    PubMed  Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Manns IBY. 2003. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    PubMed  Google Scholar 

  • Singh S, Letham DS, Jameson PE, Zhang R, Parker CW, and others. 1988. Cytokinin biochemistry in relation to leaf senescence. IV. Cytokinin metabolism in soybean explants. Plant Physiol 88:788–794

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Palni LMS, Letham DS. 1992. Cytokinin biochemistry in relation to leaf senescence. 5. Endogenous cytokinin levels and metabolism of zeatin riboside in leaf discs from green and senescent tobacco (Nicotiana rustica) leaves. J Plant Physiol 139:279–283

    CAS  Google Scholar 

  • Sondheimer E, Tzou D-S. 1971. The metabolism of hormones during seed germination and dormancy. II. The metabolism of 8-14C-zeatin in bean axes. Plant Physiol 47:516–520

    CAS  PubMed  Google Scholar 

  • Strnad M. 1997. The aromatic cytokinins. Physiol Plant 101:674–688

    Article  CAS  Google Scholar 

  • Tarkowská D, Doležal K, Tarkowski P, Astot C, Holub J, and others. 2003. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus × canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiol Plant 117:579–590

    PubMed  Google Scholar 

  • Taylor NJ, Stirk WA, van Staden J. 2003. The elusive cytokinin biosynthetic pathway. South Afr J Bot 69:269–281

    CAS  Google Scholar 

  • Van Staden J, Forsyth C. 1986. The metabolism of adenine and zeatin in immature caryopses of maize. J Plant Physiol 124:299–308

    Google Scholar 

  • Vaseva-Gemisheva I, Lee D, Alexieva V, Karanov E. 2004. Cytokinin oxidase/dehydrogenase in Pisum sativum plants during vegetative development. Influence of UV-B irradiation and high temperature on enzymatic activity. Plant Growth Regul 42:1–5

    Article  CAS  Google Scholar 

  • Veach YK, Martin RC, Mok DWS, Malbeck J, Vankova R, and others. 2003. O-Glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T. 2001. Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, and others. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Yu H, Goh CJ. 2002a. Functional characterisation of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Mol Biol 51:237–248

    Google Scholar 

  • Yang SH, Yu H, Goh CJ. 2002b. Isolation and characterization of the orchid cytokinin oxidase DSCKX1 promoter. J Exp Bot 53:1899–1907

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H. 2004. Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol 134:1654–1661

    Article  PubMed  CAS  Google Scholar 

  • Zažímalová E, Kamínek M, Březinová A, Motyka V. 1999. “Control of cytokinin biosynthesis and metabolism” In: Hooykaas PJJ, Hall MA, Libbenga KR (eds.) Biochemistry and Molecular Biology of Plant Hormones. Amsterdam, The Netherlands, Elsevier Science B.V., pp 141–160

    Google Scholar 

  • Zhang R, Letham DS. 1990. Cytokinin translocation and metabolism in lupin species. III. Translocation of xylem cytokinin into the seeds of lateral shoots of Lupinus angustifolius. Plant Sci 70:65–71

    Article  CAS  Google Scholar 

  • Zhang R, Letham DS, Willcocks DA. 2002. Movement to bark and metabolism of xylem cytokinins in stems of Lupinus angustifolius. Phytochemistry 60:483–488

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (206/03/0313). The authors thank Dr. Miroslav Kamínek for critical reading of manuscript and Vanda Lacmanová and Marie Korecká for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Motyka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudinová, A., Dobrev, P.I., Šolcová, B. et al. The Involvement of Cytokinin Oxidase/Dehydrogenase and Zeatin Reductase in Regulation of Cytokinin Levels in Pea (Pisum sativum L.) Leaves. J Plant Growth Regul 24, 188–200 (2005). https://doi.org/10.1007/s00344-005-0043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-005-0043-9

Keywords

Navigation