Skip to main content

Advertisement

Log in

Diversity and seasonal variation of marine phytoplankton in Jiaozhou Bay, China revealed by morphological observation and metabarcoding

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Phytoplankton are central components of marine environments, and are major players in the production and respiration budgeting. However, their diversity and distribution patterns are still poorly understood due largely to their small sizes and inconspicuous morphology that have been determined via the application of traditional morphology methods over the past two decades. To better understand the composition and diversity of phytoplankton in Jiaozhou Bay, China, seasonal sampling was carried out in 2019 and samples were analyzed with morphological observations and high-throughput sequencing, from which obvious seasonal variations in phytoplankton composition and proportional abundances were uncovered. Metabarcoding revealed far more diversity and species richness of phytoplankton than morphological observations, especially with respect to dinoflagellates. Diatoms were the most dominant phytoplankton group throughout the year, of which Thalassionema and Skeletonema were co-dominant in the bay. Parasitic dinoflagellates (e.g. Amoebophrya), which is often overlooked in the morphological observations, were in dominance and high diversity in the metabarcoding dataset, thus more attention should be paid to exploring the potential role of parasitic dinoflagellates. Temperature, chlorophyll a, and nutrient levels were the main influential factors on the distribution of phytoplankton. This study provided a comprehensive morphological and molecular description of phytoplankton and clearly demonstrated the importance of molecular technology in exploring phytoplankton communities. More-widespread use of molecular technology will facilitate deeper understanding of the ecological importance of the different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6 Data Availability Statement

Data are available on request from the corresponding author.

References

  • Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3): 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2.

    Article  Google Scholar 

  • Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336, https://doi.org/10.1038/nmeth.f.303.

    Article  Google Scholar 

  • Chambouvet A, Laabir M, Sengco M, Vaquer A, Guillou L. 2011. Genetic diversity of Amoebophryidae (Syndiniales) during Alexandrium catenella/tamarense (Dinophyceae) blooms in the Thau lagoon (Mediterranean Sea, France). Research in Microbiology, 162(9): 959–968, https://doi.org/10.1016/j.resmic.2011.03.002.

    Article  Google Scholar 

  • Chen T T, Liu Y, Xu S, Song S Q, Li C W. 2020. Variation of Amoebophrya community during bloom of Prorocentrum donghaiense Lu in coastal waters of the East China Sea. Estuarine, Coastal and Shelf Science, 243: 106887, https://doi.org/10.1016/j.ecss.2020.106887.

    Article  Google Scholar 

  • Chen T T, Xiao J, Liu Y, Song S Q, Li C W. 2019a. Distribution and genetic diversity of the parasitic dinoflagellate Amoebophrya in coastal waters of China. Harmful Algae, 89: 101633, https://doi.org/10.1016/j.hal.2019.101633.

    Article  Google Scholar 

  • Chen Z F, Zhang Q C, Kong F Z, Liu Y, Zhao Y, Zhou Z X, Geng H X, Dai L, Zhou M J, Yu R C. 2019b. Resolving phytoplankton taxa based on high-throughput sequencing during brown tides in the Bohai Sea, China. Harmful Algae, 84: 127–138, https://doi.org/10.1016/j.hal.2019.03.011.

    Article  Google Scholar 

  • Cheung M K, Au C H, Chu K H, Kwan H S, Wong C K. 2010. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. The ISME Journal, 4(8): 1 053–1 059, https://doi.org/10.1038/ismej.2010.26.

    Article  Google Scholar 

  • Coats D W. 1999. Parasitic life styles of marine dinoflagellates. Journal of Eukaryotic Microbiology, 46(4): 402–409, https://doi.org/10.1111/j.1550-7408.1999.tb04620.x.

    Article  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Bescot N L, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, KandelsLewis S, Coordinators T O, Acinas S G, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki M E, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237): 1261605, https://doi.org/10.1126/science.1261605.

    Article  Google Scholar 

  • Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19): 2 460–2 461, https://doi.org/10.1093/bioinformatics/btq461.

    Article  Google Scholar 

  • Elwood H J, Olsen G J, Sogin M L. 1985. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Molecular Biology and Evolution, 2(5): 399–410, https://doi.org/10.1093/oxfordjournals.molbev.a040362.

    Google Scholar 

  • Gong J, Dong J, Liu X H, Massana R. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist, 164(3): 369–379, https://doi.org/10.1016/j.protis.2012.11.006.

    Article  Google Scholar 

  • Guo S J, Zhu M L, Zhao Z X, Liang J H, Zhao Y F, Du J, Sun X X. 2019. Spatial-temporal variation of phytoplankton community structure in Jiaozhou Bay, China. Journal of Oceanology and Limnology, 37(5): 1 161–1 624, https://doi.org/10.1007/s00343-019-8249-z.

    Article  Google Scholar 

  • Huo S L, Li X C, Xi B D, Zhang H X, Ma C Z, He Z S. 2020. Combining morphological and metabarcoding approaches reveals the freshwater eukaryotic phytoplankton community. Environmental Sciences Europe, 32(1): 37, https://doi.org/10.1186/s12302-020-00321-w.

    Article  Google Scholar 

  • Jephcott T G, Alves-de-Souza C, Gleason F H, van Ogtrop F F, Sime-Ngando T, Karpov S A, Guillou L. 2016. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecology, 19: 47–58, https://doi.org/10.1016/j.funeco.2015.03.007.

    Article  Google Scholar 

  • Ki J S. 2012. Hypervariable regions (V1-V9) of the dinoflagellate 18S rRNA using a large dataset for marker considerations. Journal of Applied Phycology, 24(5): 1 035–1 043, https://doi.org/10.1007/s10811-011-9730-z.

    Article  Google Scholar 

  • Kim S, Park M G, Yih W, Coats D W. 2004. Infection of the bloom-forming thecate dinoflagellates Alexandrium affine and Gonyaulax spinifera by two strains of Amoebophrya (Dinophyta). Journal of Phycology, 40(5): 815–822, https://doi.org/10.1111/j.1529-8817.2004.04002.x.

    Article  Google Scholar 

  • Li C W, Song S Q, Liu Y, Chen T T. 2014. Occurrence of Amoebophrya spp. infection in planktonic dinoflagellates in Changjiang (Yangtze River) Estuary, China. Harmful Algae, 37: 117–124, https://doi.org/10.1016/j.hal.2014.05.009.

    Article  Google Scholar 

  • Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa J C, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello A M, Coppola L, Cornejo-Castillo F M, d’Ovidio F, De Meester L, Ferrera I, Garet-Delmas M J, Guidi L, Lara E, Pesant S, Royo-Llonch M, Salazar G, Sánchez P, Sebastian M, Souffreau C, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Coordinators T O, Gorsky G, Not F, Ogata H, Speich S, Stemmann L, Weissenbach J, Wincker P, Acinas S G, Sunagawa S, Bork P, Sullivan M B, Karsenti E, Bowler C, de Vargas C, Raes J. 2015. Determinants of community structure in the global plankton interactome. Science, 348(6237): 1262073, https://doi.org/10.1126/science.1262073.

    Article  Google Scholar 

  • Liu S M, Li R H, Zhang G L, Wang D R, Du J Z, Herbeck L S, Zhang J, Ren J L. 2011. The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China. Marine Chemistry, 125(1–4): 49–68, https://doi.org/10.1016/j.marchem.2011.02.003.

    Article  Google Scholar 

  • Liu S Y, Gibson K, Cui Z M, Chen Y, Sun X X, Chen N S. 2020. Metabarcoding analysis of harmful algal species in Jiaozhou Bay. Harmful Algae, 92: 101772, https://doi.org/10.1016/j.hal.2020.101772.

    Article  Google Scholar 

  • Liu Y, Song S Q, Chen T T, Li C W. 2017. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing. Estuarine, Coastal and Shelf Science, 189: 143–155, https://doi.org/10.1016/j.ecss.2017.03.019.

    Article  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409(6820): 603–607, https://doi.org/10.1038/35054537.

    Article  Google Scholar 

  • Mahon A R, Barnes M A, Senapati S, Feder J L, Darling J A, Chang H C, Lodge D M. 2011. Molecular detection of invasive species in heterogeneous mixtures using a microfluidic carbon nanotube platform. PLoS One, 6(2): e17280, https://doi.org/10.1371/journal.pone.0017280.

    Article  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon J C, Soulas G, Catroux G. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology, 67(5): 2 354–2 359, https://doi.org/10.1128/AEM.67.5.2354-2359.2001.

    Article  Google Scholar 

  • Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie J M, Decelle J, Dolan J R, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O, Kooistra W H C F, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice M C, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environmental Microbiology, 17(10): 4 035–4 049, https://doi.org/10.1111/1462-2920.12955.

    Article  Google Scholar 

  • Montagnes D J S, Chambouvet A, Guillou L, Fenton A. 2008. Responsibility of microzooplankton and parasite pressure for the demise of toxic dinoflagellate blooms. Aquatic Microbial Ecology, 53(2): 211–225, https://doi.org/10.3354/ame01245.

    Article  Google Scholar 

  • Moon-van der Staay S Y, De Wachter R, Vaulot D. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409(6820): 607–610, https://doi.org/10.1038/35054541.

    Article  Google Scholar 

  • Morard R, Garet-Delmas M J, Mahé F, Romac S, Poulain J, Kucera M, de Vargas C. 2018. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Scientific Reports, 8(1): 2 539, https://doi.org/10.1038/s41598-018-20833-z.

    Article  Google Scholar 

  • Parsons T R, Maita Y, Lalli C. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. 173p.

    Google Scholar 

  • Perumal N V, Rajkumar M, Perumal P, Rajasekar K T. 2009. Seasonal variations of plankton diversity in the kaduviyar estuary, Nagapattinam, Southeast coast of India. Journal of Environmental Biology, 30(6): 1 035–1 046, https://doi.org/10.2112/JCOASTRES-D-09-00051.1.

    Google Scholar 

  • Raymont J E G. 1983. Plankton and Productivity in the Oceans. Pergamon Press, Oxford. 824p.

    Google Scholar 

  • Saifullah A S M, Kamal A H M, Idris M H, Rajaee A H. 2019. Community composition and diversity of phytoplankton in relation to environmental variables and seasonality in a tropical mangrove estuary. Regional Studies in Marine Science, 32: 100826, https://doi.org/10.1016/j.rsma.2019.100826.

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1949. The Mathematical Theory of Communication. The University of Illinois Press, Champaign.

    Google Scholar 

  • Shen Z L. 2001. Historical changes in nutrient structure and its influences on phytoplantkon composition in Jiaozhou Bay. Estuarine, Coastal and ShelfScience, 52(2): 211–224, https://doi.org/10.1006/ecss.2000.0736.

    Article  Google Scholar 

  • Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora M J, Chistoserdov A, Orsi W, Edgcomb V P. 2009. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biology, 7(1): 72, https://doi.org/10.1186/1741-7007-7-72.

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen., 9(1): 1–38.

    Google Scholar 

  • Van de Peer Y, De Rijk P, Wuyts J et al. 2000. The European small subunit ribosomal RNA database. Nucleic Acids Research, 28(1): 175–176, https://doi.org/10.1093/nar/28.1.175.

    Article  Google Scholar 

  • Vlassov V V, Laktionov P P, Rykova E Y. 2007. Extracellular nucleic acids. BioEssays, 29(7): 654–667, https://doi.org/10.1002/bies.20604.

    Article  Google Scholar 

  • Yih W, Coats D W. 2000. Infection of Gymnodinium sanguineum by the dinoflagellate Amoebophrya sp.: effect of nutrient environment on parasite generation time, reproduction, and infectivity. Journal of Eukaryotic Microbiology, 47(5): 504–510, https://doi.org/10.1111/j.1550-7408.2000.tb00082.x.

    Article  Google Scholar 

Download references

7 Acknowledgment

We thank all the crew and captain of the R/V Chuangxin for logistic support during cruises. Comments and suggestions from two anonymous reviewers are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiwen Li.

Additional information

Supported by the National Science Foundation of China (NSFC) (Nos. 41876120, 41906122, 41606128, U1706218) and the Science & Technology Basic Resources Investigation Program of China (No. 2018FY100200)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhang, Y., Song, S. et al. Diversity and seasonal variation of marine phytoplankton in Jiaozhou Bay, China revealed by morphological observation and metabarcoding. J. Ocean. Limnol. 40, 577–591 (2022). https://doi.org/10.1007/s00343-021-0457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-0457-7

Keyword

Navigation