Skip to main content
Log in

Hypervariable regions (V1–V9) of the dinoflagellate 18S rRNA using a large dataset for marker considerations

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

DNA sequencing methods have been used for the molecular taxonomic discrimination of dinoflagellate protists, particularly using partial 18S rRNA sequences. This study evaluated the taxonomic discrimination power of rRNA gene hypervariable regions (V1 to V9) in dinoflagellates from a large dataset. These included 77 dinoflagellate species (9 orders, 17 families, 40 genera). The complete 18S rRNA sequences of the dinoflagellates ranged from 1,787 to 1,813 bp in length, and consisted of eight V regions with a total combined length of 678 to 699 bp. Regions longer than 100 bp were recoded for V2, V4, and V8 regions; high nucleotide divergences were detected in V1, V2, and V4 regions. Statistic tests showed that the divergences of individual V regions were significantly different (t-test, P < 0.05) compared with the complete 18S rRNA. The V2 region showed the highest score (83.5%) for PI sites. Moreover, intra-genus DNA similarities of the V2 were considerably low (<93%). Neighbor-joining analyses showed that phylogenetic resolution in the V2–V4 region was 1.32-fold higher than that of the complete 18S rRNA. These results demonstrate that V2 has the highest taxonomic resolving power within the 18S rRNA gene of dinoflagellates, suggesting the V2 and adjacent regions (e.g., V1 to V4) may be the best for marker considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372

    Article  PubMed  Google Scholar 

  • Bråte J, Logares R, Berney C, Ree DK, Klaveness D, Jakobsen KS, Shalchian-Tabrizi K (2010) Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J 4:1144–1153

    Article  PubMed  Google Scholar 

  • Busse I, Preisfeld A (2002) Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J Mol Evol 55:757–767

    Article  PubMed  CAS  Google Scholar 

  • Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4:1053–1059

    Article  PubMed  Google Scholar 

  • Crease TJ, Colbourne JK (1998) The unusually long small-subunit ribosomal RNA of the crustacean, Daphnia pulex: sequence and predicted secondary structure. J Mol Evol 46:307–313

    Article  PubMed  CAS  Google Scholar 

  • Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmored dinoflagellates. Phycologia 39:302–317

    Article  Google Scholar 

  • Fast NM, Xue L, Bingham S, Keeling PJ (2002) Re-examining alveolate evolution using multiple protein molecular phylogenies. J Eukaryot Microbiol 49:30–37

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y, Endoh H (2008) Phylogenetic analyses of the dinoflagellate Noctiluca scintillans based on beta-tubulin and Hsp90 genes. Eur J Protistol 44:27–33

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hasegawa H, Hayashida S, Ikeda Y, Sato H (2009) Hyper-variable regions in 18S rDNA of Strongyloides spp. as markers for species-specific diagnosis. Parasitol Res 104:869–874

    Article  PubMed  Google Scholar 

  • Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648

    Article  PubMed  CAS  Google Scholar 

  • Hewitt EA, Muller KM, Cannone J, Hogan DJ, Gutell R, Prescott DM (2003) Phylogenetic relationships among 28 spirotrichous ciliates documented by rDNA. Mol Phylogenet Evol 29:258–267

    Article  PubMed  CAS  Google Scholar 

  • Holzer AS, Wootten R, Sommerville C (2007) The secondary structure of the unusually long 18S ribosomal RNA of the myxozoan Sphaerospora truttae and structural evolutionary trends in the Myxozoa. Int J Parasitol 37:1281–1295

    Article  PubMed  CAS  Google Scholar 

  • Hoppenrath M, Leander BS (2010) Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. PLoS One 5:e13220

    Article  PubMed  Google Scholar 

  • Ki J-S (2010) Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in the dinoflagellates. Eur J Protistol 46:111–120

    Article  PubMed  Google Scholar 

  • Ki J-S, Han M-S (2005) Efficient 5′ ETS walking from conserved 18S rDNA sequences of dinoflagellates Alexandrium and Akashiwo sanguinea (Dinophyceae). J Appl Phycol 17:475–481

    Article  CAS  Google Scholar 

  • Ki J-S, Han M-S (2007) Informative characters on the 12 divergent domains within complete LSU rDNA sequences of the harmful dinoflagellate Alexandrium genus (Dinophyceae). J Eukaryotic Microbiol 54:210–219

    Article  CAS  Google Scholar 

  • Ki J-S, Park M-H, Han M-S (2011) Discriminative power of nuclear ribosomal DNA sequences for the DNA taxonomy of dinoflagellate Peridinium. J Phycol 47:426–435

    Article  Google Scholar 

  • Lenaers G, Maroteaux L, Michot B, Herzog M (1989) Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. J Mol Evol 29:40–51

    Article  PubMed  CAS  Google Scholar 

  • Lenaers G, Scholin C, Bhaud Y, Saint-Hilaire D, Herzog M (1991) A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1and D8. J Mol Evol 32:53–63

    Article  PubMed  CAS  Google Scholar 

  • Machouart-Dubach M, Lacroix C, Vaury C, Feuilhade de Chauvin M, Bellanne C, Derouin F, Lorenzo F (2002) Nucleotide structure of the Scytalidium hyalinum and Scytalidium dimidiatum 18S subunit ribosomal RNA gene: evidence for the insertion of a group IE intron in the rDNA gene of S. dimidiatum. FEMS Microbiol Lett 208:187–196

    Article  PubMed  CAS  Google Scholar 

  • Mankin AS, Skryabin KG, Rubtsov PM (1986) Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA. Gene 44:143–145

    Article  PubMed  CAS  Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplifed eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  PubMed  CAS  Google Scholar 

  • Murray S, Jørgensen MF, Ho SYW, Patterson DJ, Jermiin LS (2005) Improving the analysis of dinoflagellate phylogeny based on rDNA. Protist 156:269–286

    Article  PubMed  CAS  Google Scholar 

  • Murray S, Ip CL, Moore R, Nagahama Y, Fukuyo Y (2009) Are prorocentroid dinoflagellates monophyletic? A study of 25 species based on nuclear and mitochondrial genes. Protist 160:245–264

    Article  PubMed  CAS  Google Scholar 

  • Redmond NE, McCormack GP (2008) Large expansion segments in 18S rDNA support a new sponge clade (Class Demospongiae, Order Haplosclerida). Mol Phylogenet Evol 47:1090–1099

    Article  PubMed  CAS  Google Scholar 

  • Saldarriaga JF, Taylor FJ, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213

    Article  PubMed  CAS  Google Scholar 

  • Saldarriaga JF, Taylor FJR, Cavalier-Smith T, Menden-Deuer S, Keeling PJ (2004) Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 40:85–111

    Article  Google Scholar 

  • Siano R, Kooistra WHCF, Montresor M, Zingone A (2009) Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of Woloszynskia cincta sp. nov. (Dinophyceae, Suessiales). Phycologia 48:44–65

    Article  Google Scholar 

  • Siano R, Montresor M, Probert I, Not F, de Vargas C (2010) Pelagodinium gen. nov. and P. béii comb. nov., a dinoflagellate symbiont of planktonic Foraminifera. Protist 161:385–399

    Article  PubMed  Google Scholar 

  • Saunders GW, Hill DRA, Sexton JP, Andersen RA (1997) Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. Pl Syst Evol 11:237–259

    CAS  Google Scholar 

  • Stern RF, Horak A, Andrew RL, Coffroth MA, Andersen RA, Küpper FC, Jameson I, Hoppenrath M, Véron B, Kasai F, Brand J, James ER, Keeling PJ (2010) Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One 5:e13991

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taylor FJR (1987) General group characteristics, special features of interest, short history of dinoflagellate study. In: Taylor FJR (ed) The biology of dinoflagellates. Botanical Monographs vol. 21. Blackwell Scientific, Oxford, pp 1–23

    Google Scholar 

  • Taylor FJR (2004) Illumination or confusion? Dinoflagellate molecular phylogenetic data viewed from a primarily morphological standpoint. Phycol Res 52:308–324

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive a multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Jansen J, De Rijk P, De Wachter R (1997) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25:111–116

    Article  PubMed  Google Scholar 

  • Van de Peer Y, De Rijk P, Wuyts J, Winkelmans T, De Wachter R (2000) The European small subunit ribosomal RNA database. Nucleic Acids Res 28:175–176

    Article  PubMed  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor J. Wuyts, University of Antwerp, Belgium, for the assistances with the secondary structure analyses. This work was supported by both the Marine and Extreme Genome Research Center Program of the Ministry of Land, Transportation and Maritime Affairs, Republic of Korea, and by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MEST no. 2010–0009669 and NRF-C1ABA001-2010-0020704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Seu Ki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Taxa and GenBank accession numbers used in this study (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ki, JS. Hypervariable regions (V1–V9) of the dinoflagellate 18S rRNA using a large dataset for marker considerations. J Appl Phycol 24, 1035–1043 (2012). https://doi.org/10.1007/s10811-011-9730-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9730-z

Keywords

Navigation