Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China

Abstract

Dissolved organic matter (DOM) plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements, which is of importance to the management and protection of the aquatic environments. To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang (Yangtze) River basin, water samples from four natural lakes (Xiandao, Baoan, Daye, and Qingshan) in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed. The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis. The results show that: (1) two humic-like components (C1 and C2) and two protein-like substances (C3 and C4) of DOM were identified in all waterbodies; (2) C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation. C4 was widely present in the Changjiang River basin and its formation was related to microbial activity, rather than algal blooms or seasons. Influenced by the water mixing, the protein-like components were more likely to be transformed by microorganism, whereas humic-like components were more easily to be photobleached; (3) the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels. With respect to protein-like components, only C3 showed changes along the eutrophication gradients; (4) DOM showed a high affinity with permanganate index (CODMn) and chlorophyll a (chl a) while the relationship was variable with phosphorus. This study helps us systematically understand the DOM characteristics, microbial activities, and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.

This is a preview of subscription content, access via your institution.

References

  1. Amaral V, Graeber D, Calliari D, Alonso C. 2016. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnology and Oceanography, 61(3): 906–918, https://doi.org/10.1002/lno.10258.

    Article  Google Scholar 

  2. Bittar T B, Berger S A, Birsa L M, Walters T L, Thompson M E, Spencer R G M, Mann E L, Stubbins A, Frischer M E, Brandes J A. 2016. Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge. Estuarine, Coastal and Shelf Science, 182: 72–85, https://doi.org/10.1016/j.ecss.2016.08.046.

    Article  Google Scholar 

  3. Bricaud A, Morel A, Prieur L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1): 43–53, https://doi.org/10.4319/lo.1981.26.L0043.

    Article  Google Scholar 

  4. Brogi S R, Ha S Y, Kim K, Derrien M, Lee Y K, Hur J. 2018. Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic Ice Core and the Underlying Seawater (Cambridge Bay, Canada): implication for increased autochthonous DOM during ice melting. Science of the Total Environment, 627: 802–811, https://doi.org/10.1016/j.scitotenv.2018.01.251.

    Article  Google Scholar 

  5. Cárdenas C S, Gerea M, Garcia P E, Pérez G L, Diéguez M C, Rapacioli R, Reissig M, Queimaliños C. 2017. Interplay between climate and hydrogeomorphic features and their effect on the seasonal variation of dissolved organic matter in shallow temperate lakes of the Southern Andes (Patagonia, Argentina): a field study based on optical properties. Ecohydrology, 10(7): e1872, https://doi.org/10.1002/eco.1872.

    Article  Google Scholar 

  6. Catalá T S, Reche I, Álvarez M, Khatiwala S, Guallart E F, Benítez-Barrios V M, Fuentes-Lema A, Romera-Castillo C, Nieto-Cid M, Pelejero C, Fraile-Nuez E, Ortega-Retuerta E, Marrasé C, Álvarez-Salgado X A. 2015a. Water mass age and aging driving chromophoric dissolved organic matter in the dark global ocean. Global Biogeochemical Cycles, 29(7): 917–934, https://doi.org/10.1002/2014GB005048.

    Article  Google Scholar 

  7. Catalá T S, Reche I, Fuentes-lema A, Romera-Castillo C, Nieto-Cid M, Ortega-Retuerta E, Calvo E, Álvarez M, Marrasé C, Stedmon C A, Álvarez-Salgado X A. 2015b. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature Communications, 6: 5986, https://doi.org/10.1038/ncomms6986.

    Article  Google Scholar 

  8. Chen B F, Feng M H, Shang L X, Ke F, Wu X D, Li Y. 2016. Effects on cyanobacterial growth and water quality after harvesting accumulated cyanobacteria in autumn: an in-situ experiment in Lake Chaohu. Journal of Lake Sciences, 28(2): 253–262. (in Chinese with English abstract)

    Article  Google Scholar 

  9. Chen B F, Huang W, Ma S Z, Feng M H, Liu C, Gu X Z, Chen K N. 2018a. Characterization of chromophoric dissolved organic matter in the littoral zones of eutrophic lakes Taihu and Hongze during the algal bloom season. Water, 10(7): 861, https://doi.org/10.3390/w10070861.

    Article  Google Scholar 

  10. Chen B F. 2015. Research on Characteristic Variations and the Controll of Contaminants from Accumulative Blue-Green Algae in Lakeshore. Suzhou University of Science and Technology, Suzhou, China. (in Chinese with English abstract).

    Google Scholar 

  11. Chen M L, Jung J Y, Lee Y K, Hur J. 2018b. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. Science of the Total Environment, 639: 624–632, https://doi.org/10.1016/j.scitotenv.2018.05.205.

    Article  Google Scholar 

  12. Chen M L, Kim S H, Jung H J, Hyun J H, Choi J H, Lee H J, Huh I A, Hur J. 2017. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications. Water Research, 121: 150–161, https://doi.org/10.1016/j.watres.2017.05.022.

    Article  Google Scholar 

  13. Chen M L, Park M, Kim J H, Shinn Y J, Lee Y K, Hur J. 2018c. Exploring pore water biogeochemical characteristics as environmental monitoring proxies for a CO2 storage project in Pohang Basin, South Korea. Marine Pollution Bulletin, 137: 331–338, https://doi.org/10.1016/j.marpolbul.2018.10.036.

    Article  Google Scholar 

  14. Chen M L, Price R M, Yamashita Y, Jaffé R. 2010. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Applied Geochemistry, 25(6): 872–880, https://doi.org/10.1016/j.apgeochem.2010.03.005.

    Article  Google Scholar 

  15. Coble P G, Del Castillo C E, Avril B. 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10–11): 2 195–2 223, https://doi.org/10.1016/S0967-0645(98)00068-X.

    Article  Google Scholar 

  16. Coble P G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4): 325–346, https://doi.org/10.1016/0304-4203(95)00062-3.

    Article  Google Scholar 

  17. Coble P G. 2007. Marine optical biogeochemistry: the chemistry of ocean color. Cheminform, 38(20): 402–418, https://doi.org/10.1002/chin.200720265.

    Article  Google Scholar 

  18. Compilation Committee for the Records of Lakes in Hubei Province. 2015. The Records of Lakes in Hubei Province. Vol. I. Hubei Science & Technology Press, Wuhan, China. 518p. (in Chinese)

    Google Scholar 

  19. Dong Q Q, Li P H, Huang Q H, Abdelhafez A A, Chen L. 2014. Occurrence, polarity and bioavailability of dissolved organic matter in the Huangpu River, China. Journal of Environmental Sciences, 26(9): 1 843–1 850, https://doi.org/10.1016/j.jes.2014.06.020.

    Article  Google Scholar 

  20. Editorial Board of Water and Wastewater Monitoring and Analysis Methods and State Environmental Protection Administration of China. 2002. Water and Wastewater Monitoring and Analysis Methods. 4th edn. China Environmental Science Press, Beijing, China. 610p. (in Chinese)

    Google Scholar 

  21. Gerea M, Pérez G L, Unrein F, Cárdenas C S, Morris D, Queimaliños C. 2017. CDOM and the underwater light climate in two shallow North Patagonian Lakes: evaluating the effects on nano and microphytoplankton community structure. Aquatic Sciences, 79(2): 231–248, https://doi.org/10.1007/s00027-016-0493-0.

    Article  Google Scholar 

  22. Green S A, Blough N V. 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 39(8): 1 903–1 916, https://doi.org/10.4319/lo.1994.39.8.1903.

    Article  Google Scholar 

  23. Guéguen C, Cuss C W, Cassels C J, Carmack E C. 2014. Absorption and fluorescence of dissolved organic matter in the waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea. Journal of Geophysical Research: Oceans, 119(3): 2 034–2 047, https://doi.org/10.1002/2013JC009173.

    Google Scholar 

  24. Guo W D, Stedmon C A, Han Y C, Wu F, Yu X X, Hu M H. 2007. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry, 107(3): 357–366, https://doi.org/10.1016/j.marchem.2007.03.006.

    Article  Google Scholar 

  25. Hao C, Zheng B H, Song Y H, Qin Y W. 2011. Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquatic Sciences, 73(1): 103–112, https://doi.org/10.1007/s00027-010-0164-5.

    Article  Google Scholar 

  26. Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3): 955–969, https://doi.org/10.4319/lo.2008.53.3.0955.

    Article  Google Scholar 

  27. Henderson R K, Baker A, Parsons S A, Jefferson B. 2008. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13): 3 435–3 445, https://doi.org/10.1016/j.watres.2007.10.032.

    Article  Google Scholar 

  28. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. 2009. Properties of fluorescent dissolved organic matter in the Gironde estuary. Organic Geochemistry, 40(6): 706–719, https://doi.org/10.1016/j.orggeochem.2009.03.002.

    Article  Google Scholar 

  29. Hur J, Park M H, Schlautman M A. 2009. Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors. Environmental Science & Technology, 43(7): 2 315–2 321, https://doi.org/10.1021/es802773b.

    Article  Google Scholar 

  30. Jørgensen L, Stedmon C A, Kragh T, Markager S, Middelboe M, Søndergaard M. 2011. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Marine Chemistry, 126(1–4): 139–148, https://doi.org/10.1016/j.marchem.2011.05.002.

    Article  Google Scholar 

  31. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E. 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113(3–4): 273–291, https://doi.org/10.1016/S0016-7061(02)00365-8.

    Article  Google Scholar 

  32. Keith D J, Yoder J A, Freeman S A. 2002. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: implications for phytoplankton in coastal waters. Estuarine, Coastal and Shelf Science, 55(5): 705–717, https://doi.org/10.1006/ecss.2001.0922.

    Article  Google Scholar 

  33. Kowalczuk P, Tilstone G H, Zablocka M, Röttgers R, Thomas R. 2013. Composition of dissolved organic matter along an Atlantic meridional transect from fluorescence spectroscopy and parallel factor analysis. Marine Chemistry, 157: 170–184, https://doi.org/10.1016/j.marchem.2013.10.004.

    Article  Google Scholar 

  34. Li P H, Chen L, Zhang W, Huang Q H. 2015. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis. PLoS One, 10(6): e0130852, https://doi.org/10.1371/journal.pone.0130852.

    Article  Google Scholar 

  35. Li S J, Zhang J Q, Mu G Y, Ju H Y, Wang R, Li D J, Shabbir A. 2016. Spatiotemporal characterization of chromophoric dissolved organic matter (CDOM) and CDOM-DOC relationships for highly polluted river. Water, 8(9): 399, https://doi.org/10.3390/w8090399.

    Article  Google Scholar 

  36. Liu C, Du Y H, Yin H B, Fan C X, Chen K N, Zhong J C, Gu X Z. 2019a. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environmental Pollution, 246: 207–216, https://doi.org/10.1016/j.envpol.2018.11.092.

    Article  Google Scholar 

  37. Liu D, Du Y X, Yu S J, Luo J H, Duan H T. 2020. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River. Water Research, 168: 115 132, https://doi.org/10.1016/j.watres.2019.115132.

    Article  Google Scholar 

  38. Liu T, Chen Z L, Yu W Z, You S J. 2011. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Research, 45(5): 2 111–2 121, https://doi.org/10.1016/j.watres.2010.12.023.

    Article  Google Scholar 

  39. Liu Z B, Liang W J, Qin L P, Tang J H. 2019b. Distribution and seasonal variations of chromophoric dissolved organic matter (CDOM) in the Bohai Sea and the North Yellow Sea. Environmental Science, 40(3): 1 198–1 208. (in Chinese with English abstract).

    Google Scholar 

  40. Markager S, Vincent W F. 2000. Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnology and Oceanography, 45(3): 642–650, https://doi.org/10.4319/lo.2000.45.3.0642.

    Article  Google Scholar 

  41. Murphy K R, Butler K D, Spencer R G M, Stedmon C A, Boehme J R, Aiken G R. 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science & Technology, 44(24): 9 405–9 412, https://doi.org/10.1021/es102362t.

    Article  Google Scholar 

  42. Murphy K R, Hambly A, Singh S, Henderson R K, Baker A, Stuetz R, Khan S J. 2011. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environmental Science & Technology, 45(7): 2 909–2 916, https://doi.org/10.1021/es103015e.

    Article  Google Scholar 

  43. Murphy K R, Ruiz G M, Dunsmuir W T M, Waite T D. 2006. Optimized parameters for fluorescence-based verification of ballast water exchange by ships. Environmental Science & Technology, 40(7): 2 357–2 362, https://doi.org/10.1021/es0519381.

    Article  Google Scholar 

  44. Murphy K R, Stedmon C A, Graeber D, Bro R. 2013. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23): 6 557–6 566, https://doi.org/10.1039/c3ay41160e.

    Article  Google Scholar 

  45. Murphy K R, Stedmon C A, Waite T D, Ruiz G M. 2008. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108(1–2): 40–58, https://doi.org/10.1016/j.marchem.2007.10.003.

    Article  Google Scholar 

  46. Murphy K R, Stedmon C A, Wenig P, Bro R. 2014. Openfluoran online spectral library of auto-fluorescence by organic compounds in the environment. Analytical Methods, 6(3): 658–661, https://doi.org/10.1039/C3AY41935E.

    Article  Google Scholar 

  47. Osburn C L, Stedmon C A. 2011. Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochthonous inputs. Marine Chemistry, 126(1–4): 281–294, https://doi.org/10.1016/j.marchem.2011.06.007.

    Article  Google Scholar 

  48. Osburn C L, Wigdahl C R, Fritz S C, Saros J E. 2011. Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains. Limnology and Oceanography, 56(6): 2 371–2 390, https://doi.org/10.4319/lo.2011.56.6.2371.

    Article  Google Scholar 

  49. Para J, Coble P G, Charrière B, Tedetti M, Fontana C, Sempéré R. 2010. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River. Biogeosciences, 7(12): 4 083–4 103, https://doi.org/10.5194/bgd-7-5675-2010.

    Article  Google Scholar 

  50. Patidar S K, Chokshi K, George B, Bhattacharya S, Mishra S. 2015. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India. Environmental Monitoring and Assessment, 187(1): 4 118, https://doi.org/10.1007/s10661-014-4118-6.

    Article  Google Scholar 

  51. Peuravuori J, Pihlaja K. 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 337(2): 133–149, https://doi.org/10.1016/S0003-2670(96)00412-6.

    Article  Google Scholar 

  52. Schittich A R, Wünsch U J, Kulkarni H V, Battistel M, Bregnhøj H, Stedmon C A, McKnight U S. 2018. Investigating fluorescent organic-matter composition as a key predictor for arsenic mobility in groundwater aquifers. Environmental Science & Technology, 52(22): 13 027–13 036, https://doi.org/10.1021/acs.est.8b04070.

    Article  Google Scholar 

  53. Sharpless C M, Blough N V. 2014. The importance of chargetransfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environmental Science: Processes & Impacts, 16(4): 654–671, https://doi.org/10.1039/C3EM00573A.

    Google Scholar 

  54. Søndergaard M, Stedmon C A, Borch N H. 2003. Fate of terrigenous dissolved organic matter (DOM) in estuaries: aggregation and bioavailability. Ophelia, 57(3): 161–176, https://doi.org/10.1080/00785236.2003.10409512.

    Article  Google Scholar 

  55. Song K S, Shang Y X, Wen Z D, Jacinthe P A, Liu G, Lyu L L, Fang C. 2019. Characterization of cdom in saline and freshwater lakes across China using spectroscopic analysis. Water Research, 150: 403–417, https://doi.org/10.1016/j.watres.2018.12.004.

    Article  Google Scholar 

  56. Spencer R G M, Aiken G R, Wickland K P, Striegl R G, Hernes P J. 2008. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River Basin, Alaska. Global Biogeochemical Cycles, 22(4): GB4002, https://doi.org/10.1029/2008GB003231.

    Article  Google Scholar 

  57. Stedmon C A, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4): 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0.

    Article  Google Scholar 

  58. Stedmon C A, Markager S, Tranvik L, Kronberg L, Kronberg L, Slätis T, Martinsen W. 2007a. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry, 104(3–4): 227–240, https://doi.org/10.1016/j.marchem.2006.11.005.

    Article  Google Scholar 

  59. Stedmon C A, Markager S. 2005. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50(2): 686–697, https://doi.org/10.4319/lo.2005.50.2.0686.

    Article  Google Scholar 

  60. Stedmon C A, Nelson N B. 2015. The optical properties of DOM in the ocean. In: Hansel D A, Carlson C A eds. Biogeochemistry of Marine Dissolved Organic Matter. 2nd edn. Academic Press, Boston, America. p.481–508.

    Google Scholar 

  61. Stedmon C A, Thomas D N, Granskog M, Kaartokallio H, Papadimitriou S, Kuosa H. 2007b. Characteristics of dissolved organic matter in Baltic Coastal Sea Ice: allochthonous or autochthonous origins? Environmental Science & Technology, 41(21): 7 273–7 279, https://doi.org/10.1021/es071210f.

    Article  Google Scholar 

  62. Stedmon C A, Thomas D N, Papadimitriou S, Granskog M A, Dieckmann G S. 2011. Using fluorescence to characterize dissolved organic matter in Antarctic Sea Ice Brines. Journal of Geophysical Research: Biogeosciences, 116(G3): G03027, https://doi.org/10.1029/2011JG001716.

    Article  Google Scholar 

  63. Uyguner C S, Bekbolet M. 2005. Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination, 176(1–3): 47–55, https://doi.org/10.1016/j.desal.2004.10.027.

    Article  Google Scholar 

  64. Wang Q, Pan J Z, Wu X D, Ma S Z, Chen B F. 2018. Feature distribution and source analysis of chromophoric dissolved organic matter of lake wetlands in Taihu Lake basin. Jiangsu Agricultural Sciences, 46(21): 279–285. (in Chinese)

    Google Scholar 

  65. Wang S H, Wang W W, Jiang X, Zhao L, Zhang B. 2016. Distribution of chromophoric dissolved organic matter in Lihu Lake using excitation-emission matrix fluorescence and parallel factor analysis. China Environmental Science, 36(2): 517–524. (in Chinese with English abstract)

    Google Scholar 

  66. Wang X C, Litz L, Chen R F, Huang W, Feng P, Altabet M A. 2007a. Release of dissolved organic matter during oxic and anoxic decomposition of salt marsh cordgrass. Marine Chemistry, 105(3–4): 309–321, https://doi.org/10.1016/j.marchem.2007.03.005.

    Article  Google Scholar 

  67. Wang X N, Wu Y, Bao H Y, Gan S C, Zhang J. 2019. Sources, transport, and transformation of dissolved organic matter in a large river system: Illustrated by the Changjiang River, China. Journal of Geophysical Research: Biogeosciences, 124(12): 3 881–3 901, https://doi.org/10.1029/2018JG004986.

    Google Scholar 

  68. Wang X, Zhang Y L, Zhao Q H. 2007b. On spectral absorption coefficients measurement methods of pure water, CDOM, total particulates, phytoplankton and nonalgal particulates. Journal of Safety and Environment, 7(4): 97–102. (in Chinese with English abstract)

    Google Scholar 

  69. Wang Y, Zhang D, Shen Z Y, Feng C H, Chen J. 2013. Revealing sources and distribution changes of dissolved organic matter (DOM) in pore water of sediment from the Yangtze Estuary. PLoS One, 8(10): e76633, https://doi.org/10.1371/journal.pone.0076633.

    Article  Google Scholar 

  70. Wünsch U J, Geuer J K, Lechtenfeld O J, Koch B P, Murphy K R, Stedmon C A. 2018. Quantifying the impact of solidphase extraction on chromophoric dissolved organic matter composition. Marine Chemistry, 207: 33–41, https://doi.org/10.1016/j.marchem.2018.08.010.

    Article  Google Scholar 

  71. Wünsch U J, Murphy K R, Stedmon C A. 2015. Fluorescence quantum yields of natural organic matter and organic compounds: implications for the fluorescence-based interpretation of organic matter composition. Frontiers in Marine Science, 2: 98, https://doi.org/10.3389/fmars.2015.00098.

    Article  Google Scholar 

  72. Wünsch U J, Murphy K R, Stedmon C A. 2017. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter. Environmental Science & Technology, 51(20): 11 900–11 908, https://doi.org/10.1021/acs.est.7b03260.

    Article  Google Scholar 

  73. Xiao K, Han B J, Sun J Y, Tan J H, Yu J L, Liang S, Shen Y X, Huang X. 2019. Stokes shift and specific fluorescence as potential indicators of organic matter hydrophobicity and molecular weight in membrane bioreactors. Environmental Science & Technology, 53(15): 8 985–8 993, https://doi.org/10.1021/acs.est.9b02114.

    Article  Google Scholar 

  74. Xiao K, Liang S, Xiao A H, Lei T, Tan J H, Wang X M, Huang X. 2018. Fluorescence quotient of excitation-emission matrices as a potential indicator of organic matter behavior in membrane bioreactors. Environmental Science: Water Research & Technology, 4(2): 281–290, https://doi.org/10.1039/C7EW00270J.

    Google Scholar 

  75. Yamashita Y, Scinto L J, Maie N, Jaffgé R. 2010. Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems, 13(7): 1 006–1 019, https://doi.org/10.1007/s10021-0109370-1.

    Article  Google Scholar 

  76. Yang L Y, Zhuang W E, Chen C T A, Wang B J, Kuo F W. 2017. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC. Water Research, 111: 195–203, https://doi.org/10.1016/j.watres.2017.01.001.

    Article  Google Scholar 

  77. Yu H R, Liang H, Qu F S, Han Z S, Shao S L, Chang H Q, Li G B. 2015. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Scientific Reports, 5: 10 207, https://doi.org/10.1038/srep10207.

    Article  Google Scholar 

  78. Zhang H, Cui K P, Zhang Q, Ou X, Dong X B, Wu C G. 2019. Spectral analysis and source analysis of dissolved organic matter in Pai River. Research of Environmental Sciences, 32(2): 227–234. (in Chinese with English abstract)

    Google Scholar 

  79. Zhang Y L, Liu X H, Wang M Z, Qin B Q. 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry, 55: 26–37, https://doi.org/10.1016/j.orggeochem.2012.11.007.

    Article  Google Scholar 

  80. Zhang Y L, Van Dijk M A, Liu M L, Zhu G W, Qin B Q. 2009. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Research, 43(18): 4 685–4 697, https://doi.org/10.1016/j.watres.2009.07.024.

    Article  Google Scholar 

  81. Zhang Y L, Yin Y, Liu X H, Shi Z Q, Feng L Q, Liu M L, Zhu G W, Gong Z J, Qin B Q. 2011. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Organic Geochemistry, 42(5): 510–519, https://doi.org/10.1016/].orggeochem.2011.03.007.

    Article  Google Scholar 

  82. Zhang Y L, Zhang E L, Yin Y, van Dijk M A, Feng L Q, Shi Z Q, Liu M L. 2010. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography, 55(6): 2 645–2 659, https://doi.org/10.4319/lo.2010.55.6.2645.

    Article  Google Scholar 

  83. Zhang Y L, Zhou Y Q, Shi K, Qin B Q, Yao X L, Zhang Y B. 2018. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: implications for monitoring and assessing lake eutrophication. Water Research, 131: 255–263, https://doi.org/10.1016/j.watres.2017.12.051.

    Article  Google Scholar 

  84. Zhou L, Zhou Y Q, Yao X L, Cai J, Liu X, Tang X M, Zhang Y L, Jang K S, Jeppesen E. 2020. Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients. Environment International, 134: 105 330, https://doi.org/10.1016/j.envint.2019.105330.

    Article  Google Scholar 

  85. Zhou Y Q, Davidson T A, Yao X L, Zhang Y L, Jeppesen E, De Souza J G, Wu H W, Shi K, Qin B Q. 2018. How autochthonous dissolved organic matter responds to eutrophication and climate warming: evidence from a cross-continental data analysis and experiments. Earth, science Reviews, 185: 928–937, https://doi.org/10.1016/j.earscirev.2018.08.013.

    Article  Google Scholar 

  86. Zhou Y Q, Zhang Y L, Jeppesen E, Murphy K R, Shi K, Liu M L, Liu X H, Zhu G W. 2016a. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake. Water Research, 100: 211–221, https://doi.org/10.1016/j.watres.2016.05.021.

    Article  Google Scholar 

  87. Zhou Y Q, Zhang Y L, Shi K, Niu C, Liu X H, Duan H T. 2015. Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter. Journal of Great Lakes Research, 41(2): 597–606, https://doi.org/10.1016/j.jglr.2015.03.027.

    Article  Google Scholar 

  88. Zhou Z Z, Guo L D, Minor E C. 2016b. Characterization of bulk and chromophoric dissolved organic matter in the Laurentian Great Lakes during summer 2013. Journal of Great Lakes Research, 42(4): 789–801, https://doi.org/10.1016/j.jglr.2016.04.006.

    Article  Google Scholar 

  89. Zhu L J, Zhao Y, Bai S C, Zhou H X, Chen X M, Wei Z M. 2020. New insights into the variation of dissolved organic matter components in different latitudinal lakes of northeast China. Limnology and Oceanography, 65(3): 471–481, https://doi.org/10.1002/lno.11316.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Muhua FENG, Fan XUN, and Chuyu LUO for their assistance in sampling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wu.

Additional information

Data Availability Statement

The datasets generated and/or analyzed during the current study are available from the corresponding author on request.

Supported by the Science and Technology Research Project of Education Department of Hubei Province (Nos. Q20182502, D20152503), the Innovation Team Project of HBNU of Heavy Metal Pollution Mechanism and Ecological Restoration for Lake-Catchment System, Youth Project of Hubei Natural Science Foundation (No. 2018CFB321), and the Hubei Undergraduate Training Program for Innovation and Entrepreneurship (No. S201910513001)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Wu, X., Ge, X. et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0102-x

Download citation

Keyword

  • Hubei
  • eutrophic lake
  • dissolved organic matter (DOM)
  • excitation-emission spectra
  • parallel factor analysis