Skip to main content
Log in

Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Ultraviolet–visible absorption spectral slope ratios SR (slope in 275–295 nm divided by slope in 350–400 nm) and humification index (HIX, integrated fluorescence emission in 435–480 nm divided by that in 435–480 and 300–345 nm) were compared when characterizing chromophoric dissolved organic matter (CDOM) in three humic acids and 44 whole water samples. HIX increased with increasing pH for humic acids, while their SR showed much more complicated dependencies on pH. There was a negative correlation between SR and HIX. SR increased in the order terrestrial coal/peat < terrestrial soil/river < seawater, while HIX increased in the order seawater < terrestrial soil/river < terrestrial coal/peat. The comparative study in this work indicates that terrestrially derived CDOM has higher HIX and lower SR than marine CDOM. Investigators may potentially use these two indices to compare qualitatively the character of CDOM in different sources (e.g., terrestrial vs. marine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astoreca R, Rousseau V, Lancelot C (2009) Coloured dissolved organic matter (CDOM) in Southern North Sea waters: optical characterization and possible origin. Estuar Coast Shelf Sci 85:633–640

    Article  CAS  Google Scholar 

  • Baker A, Spencer RGM (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232

    Article  CAS  PubMed  Google Scholar 

  • Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules. Academic Press, New York

    Google Scholar 

  • Boyle ES, Guerriero N, Thiallet A, Del Vecchio R, Blough NV (2009) Optical properties of humic substances and CDOM: relation to structure. Environ Sci Technol 43:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68–81

    Article  CAS  Google Scholar 

  • Chen H, Kenny JE (2007) A study of pH effects on humic substances using chemometric analysis of excitation-emission matrices. Annals Environ Sci 1:1–9

    CAS  Google Scholar 

  • Chin YP, Aiken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858

    Article  CAS  Google Scholar 

  • Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107:402–418

    Article  CAS  PubMed  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  CAS  PubMed  Google Scholar 

  • De Haan H, De Boer T (1987) Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer. Water Res 21:731–734

    Article  Google Scholar 

  • Del Castillo CE, Coble PG, Morell JM, Lopez JM, Corredor JE (1999) Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar Chem 66:35–51

    Article  CAS  Google Scholar 

  • Del Vecchio R, Blough NV (2004a) Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar Chem 89:169–187

    Article  CAS  Google Scholar 

  • Del Vecchio R, Blough NV (2004b) On the origin of the optical properties of humic substances. Environ Sci Technol 38:3885–3891

    Article  CAS  PubMed  Google Scholar 

  • Dycus PJM, Healy KD, Stearman GK, Wells MJM (1995) Diffusion coefficients and molecular weight distributions of humic and fulvic acids determined by flow field-flow fractionation. Sep Sci Technol 30:1435–1453

    Article  CAS  Google Scholar 

  • Esteves VI, Otero M, Duarte AC (2009) Comparative characterization of humic substances from the open ocean, estuarine water and fresh water. Org Geochem 40:942–950

    Article  CAS  Google Scholar 

  • Fuentes M, Gonzalez-Gaitano G, Garcia-Mina JM (2006) The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Org Geochem 37:1949–1959

    Article  CAS  Google Scholar 

  • Gao L, Fan D, Li D, Cai J (2009) Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China. Mar Environ Res 69:187–197

    Article  PubMed  Google Scholar 

  • Gonsior M, Peake B, Cooper W, Jaffe R, Young H, Kahn A, Kowalczuk P (2008) Spectral characterization of chromophoric dissolved organic matter (CDOM) in a fjord (Doubtful Sound, New Zealand). Aquat Sci 70:397–409

    Article  CAS  Google Scholar 

  • Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916

    Article  CAS  Google Scholar 

  • Gu Q, Kenny JE (2009) Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter. Anal Chem 81:420–426

    Article  CAS  PubMed  Google Scholar 

  • Hayase K, Tsubota H (1985) Sedimentary humic acid and fulvic acid as fluorescent organic materials. Geochim Cosmochim Acta 49:159–163

    Article  CAS  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limn Oceanogr 53:955–969

    Article  Google Scholar 

  • Hulatt CJ, Thomas DN, Bowers DG, Norman L, Zhang C (2009) Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar Coast Shelf Sci 84:147–153

    Article  CAS  Google Scholar 

  • Kalbitz K, Geyer S, Geyer W (2000) A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances. Chemosphere 40:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Kowalczuk P, Durako MJ, Young H, Kahn AE, Cooper WJ, Gonsior M (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Mar Chem 113:182–196

    Article  CAS  Google Scholar 

  • Laurion I, Ventura M, Catalan J, Psenner R, Sommaruga R (2000) Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among- and within-lake variability. Limn Oceanogr 45:1274–1288

    Article  Google Scholar 

  • Loiselle SA, Bracchini L, Dattilo AM, Ricci M, Tognazzi A, Cózar A, Rossi C (2009) The optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol Oceanogr 54:590–597

    Article  CAS  Google Scholar 

  • Malcolm RL, MacCarthy P (1986) Limitations in the use of commercial humic acids in water and soil research. Environ Sci Technol 20:904–911

    Article  CAS  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limn. Oceanogr. 46:38–48

    Article  CAS  Google Scholar 

  • Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108:40–58

    Article  CAS  Google Scholar 

  • Ohno T (2002a) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746

    Article  CAS  PubMed  Google Scholar 

  • Ohno, T., 2002b. Response to comment on “Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter”. Environ. Sci. Technol. 36, 4196

    Google Scholar 

  • Ohno T, Bro R (2006) Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Sci Soc Am J 70:2028–2037

    Article  CAS  Google Scholar 

  • Patel-Sorrentino N, Mounier S, Benaim JY (2002) Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res 36:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149

    Article  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810

    Article  CAS  Google Scholar 

  • Piccolo A, Zaccheo P, Genevini PG (1992) Chemical characterization of humic substances extracted from organic-waste-amended soils. Biores. Technol. 40:275–282

    Article  CAS  Google Scholar 

  • Rosa AH, Sim es ML, Camargo de Oliveira L, Rocha JC, Neto LM, Milori D (2005) Multimethod study of the degree of humification of humic substances extracted from different tropical soil profiles in Brazil’s Amazonian region. Geoderma 127:1–10

    Google Scholar 

  • Sarpal RS, Mopper K, Kieber DJ (1995) Absorbance properties of dissolved organic matter in Antarctic sea water. Antarct. J.U.S. 30:139–140

    Google Scholar 

  • Schnitzer M (1980) Effect of low pH on the chemical structure and reactions of humic substances. In: Hutchinson TC, Havas M (eds.) Effects of acid precipitation on terrestrial ecosystems, Plenum Press, New York, pp 203–222

  • Shinozuka T, Shibata M, Yamaguchi T (2004) Molecular weight characterization of humic substances by MALDI–TOF–MS. J Mass Spectrom Soc Jpn 52:29–32

    CAS  Google Scholar 

  • Spencer RGM, Baker A, Ahad JME, Cowie GL, Ganeshram R, Upstill-Goddard RC, Uher G (2007a) Discriminatory classification of natural and anthropogenic waters in two UK estuaries. Sci Total Environ 373:305–323

    Article  CAS  PubMed  Google Scholar 

  • Spencer RGM, Bolton L, Baker A (2007b) Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Res 41:2941–2950

    Article  CAS  PubMed  Google Scholar 

  • Stedmon CA, Markager S (2005) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limn. Oceanogr. 50:1415–1426

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, Wiley

  • Stubbins A, Hubbard V, Uher G, Law CS, Upstill-Goddard RC, Aiken GR, Mopper K (2008) Relating carbon monoxide photoproduction to dissolved organic matter functionality. Environ Sci Technol 42:3271–3276

    Article  CAS  PubMed  Google Scholar 

  • Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71:104–126

    Article  CAS  Google Scholar 

  • Summers RS, Cornel PK, Roberts PV (1987) Molecular size distribution and spectroscopic characterization of humic substances. Sci Total Environ 62:27–37

    Article  CAS  Google Scholar 

  • Tossell JA (2009) Quinone-hydroquinone complexes as model components of humic acids: Theoretical studies of their structure, stability and Visible-UV spectra. Geochim Cosmochim Acta 73:2023–2033

    Article  CAS  Google Scholar 

  • Twardowski MS, Donaghay PL (2002) Photobleaching of aquatic dissolved materials: Absorption removal, spectral alteration, and their interrelationship. J Geophys Res 107:6.1–6.12

    Google Scholar 

  • Twardowski MS, Boss E, Sullivan JM, Donaghay PL (2004) Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar Chem 89:69–88

    Article  CAS  Google Scholar 

  • Valeur B (2002) Molecular fluorescence: principles and applications. Weinheim; New York, Wiley-VCH

    Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Moppers K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Zepp RG, Schlotzhauer PF (1981) Comparison of photochemical behavior of various humic substances in water: III. Spectroscopic properties of humic substances. Chemosphere 10:479–486

    Article  Google Scholar 

  • Zepp RG, Sheldon WM, Moran MA (2004) Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar Chem 89:15–36

    Article  CAS  Google Scholar 

  • Zhang Y, van Dijk MA, Liu M, Zhu G, Qin B (2009) The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Res 43:4685–4697

    Article  CAS  PubMed  Google Scholar 

  • Zsolnay A (2002) Comment on “Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter”. Environ Sci Technol 36:4195

    Google Scholar 

  • Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers and Yu-ping Chin at the Ohio State University for their insightful comments and suggestions. This work was sponsored by the National Basic Research Program of China (973 Program, grant No. 2007CB407306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Zheng, B., Song, Y. et al. Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquat Sci 73, 103–112 (2011). https://doi.org/10.1007/s00027-010-0164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0164-5

Keywords

Navigation