Skip to main content
Log in

Thermal entanglement versus quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg system with Herring–Flicker coupling under Dzyaloshinsky–Moriya interaction

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In our investigation, we delve into the dynamics of thermal entanglement and quantum-memory-assisted entropic uncertainty relation (QMA-EUR) within an XXZ Heisenberg spin-1/2 chain consisting of two qubits. This system is affected by the Herring–Flicker (HF) coupling and exposed to the Dzyaloshinsky–Moriya (DM) interaction, in the presence of an external homogeneous magnetic field. We assume that the system is in thermal equilibrium with a reservoir and examine how various parameters, including the HF coupling distance R, equilibrium temperature, and other system characteristics, affect the logarithmic negativity used to quantify thermal entanglement and QMA-EUR. Our findings reveal intriguing distinctions in the behaviors of QMA-EUR and thermal entanglement. Notably, an increase in temperature is found to effectively reduce thermal entanglement while simultaneously enhancing QMA-EUR. Furthermore, we notice that bipartite entanglement and QMA-EUR exhibit distinct behaviors as we vary the coupling distance, R. Specifically, the logarithmic negativity attains its highest value at a coupling distance of \(R = 1.25\), which coincides with the lowest QMA-EUR value. Furthermore, we discover that the presence of high-intensity magnetic fields has a detrimental influence on the level of thermal entanglement. However through adjustments in the inter-spins relative distance R, the strength of the DM interaction, temperature T, the anisotropy parameter, and the static magnetic field B, it is possible to suppress the QMA-EUR and enhance bipartite entanglement within the system. These findings suggest encouraging possibilities for advancing quantum technologies that make use of this quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This research is a theoretical work and has no associated data.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  2. C.H. Bennett, S.J. Wiesner, Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97 (1985)

    ADS  MathSciNet  Google Scholar 

  4. A. Barenco, D. Deutsch, A. Ekert, R. Jozsa, Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083 (1995)

    Article  ADS  Google Scholar 

  5. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  Google Scholar 

  7. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  9. G.C. Fouokeng, E. Tedong, A.G. Tene, M. Tchoffo, L.C. Fai, Teleportation of single and bipartite states via a two qubits XXZ Heizenberg spin chain in a non-Markovian environment. Phys. Lett. A 384(28), 126719 (2020)

    Article  MathSciNet  Google Scholar 

  10. G. Vallone, D.G. Marangon, M. Tomasin, P. Villoresi, Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90(5), 052327 (2014)

    Article  ADS  Google Scholar 

  11. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  12. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)

    Article  ADS  Google Scholar 

  13. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  14. W.K. Wootters, Entanglement of formation and concurrence. Quant. Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  Google Scholar 

  15. A. Uhlmann, Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Popescu, D. Rohrlich, Thermodynamics and the measure of entanglement. Phys. Rev. A 56(5), R3319 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Bruß, Characterizing entanglement. J. Math. Phys. 43(9), 4237–4251 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  21. M.B. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95(9), 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Horodecki, P. Horodecki, R. Horodecki, On the necessary and sufficient conditions for separability of mixed quantum states. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Horodecki, P. Horodecki, R. Horodecki, Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283(1–2), 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Lee, D.P. Chi, S.D. Oh, J. Kim, Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68(6), 062304 (2003)

    Article  ADS  Google Scholar 

  25. M. Mansour, Y. Oulouda, A. Sbiri, M. El Falaki, Decay of negativity of randomized multiqubit mixed states. Laser Phys. 31(3), 035201 (2021)

    Article  ADS  Google Scholar 

  26. E. Chaouki, Z. Dahbi, M. Mansour, Dynamics of quantum correlations in a quantum dot system with intrinsic decoherence effects. Int. J. Mod. Phys. B 36(22), 2250141 (2022)

    Article  ADS  Google Scholar 

  27. Z. Dahbi, M. Oumennana, K.E. Anouz, M. Mansour, A.E. Allati, Quantum Fisher information versus quantum skew information in double quantum dots with Rashba interaction. Appl. Phys. B 129(2), 27 (2023)

    Article  ADS  Google Scholar 

  28. M. Benzahra, M. Mansour, M. Oumennana, S. Elghaayda, Quantum correlations and thermal coherence in a two-superconducting charge qubit system. Laser Phys. 33(7), 075202 (2023)

    Article  ADS  Google Scholar 

  29. S. Elghaayda, A.N. Khedr, M. Tammam, M. Mansour, M. Abdel-Aty, Quantum entanglement versus skew information correlations in dipole-dipole system under KSEA and DM interactions. Quant. Inf. Process. 22(2), 117 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Oumennana, E. Chaouki, M. Mansour, The intrinsic decoherence effects on nonclassical correlations in a dipole-dipole two-spin system with Dzyaloshinsky–Moriya interaction. Int. J. Theor. Phys. 62(1), 10 (2022)

    Article  MathSciNet  Google Scholar 

  31. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3–4), 172–198 (1927)

    Article  ADS  Google Scholar 

  32. H.P. Robertson, The uncertainty principle. Phys. Rev. 34(1), 163 (1929)

    Article  ADS  Google Scholar 

  33. I. Białynicki-Birula, J. Mycielski, Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129–132 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Deutsch, Uncertainty in quantum measurements. Phys. Rev. Lett. 50(9), 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  35. K. Kraus, Complementary observables and uncertainty relations. Phys. Rev. D 35(10), 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Maassen, J.B.M. Uffink, Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, The uncertainty principle in the presence of quantum memory. Nat. Phys. 6(9), 659–662 (2010)

    Article  Google Scholar 

  38. A.K. Pati, M.M. Wilde, A.U. Devi, A.K. Rajagopal, Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86(4), 042105 (2012)

    Article  ADS  Google Scholar 

  39. M.L. Hu, H. Fan, Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87(2), 022314 (2013)

    Article  ADS  Google Scholar 

  40. M.L. Hu, H. Fan, Quantum-memory-assisted entropic uncertainty principle, teleportation and entanglement witness in structured reservoirs. Phys. Rev. A 86(3), 032338 (2012)

    Article  ADS  Google Scholar 

  41. H.M. Zou, M.F. Fang, B.Y. Yang, Y.N. Guo, W. He, S.Y. Zhang, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments. Phys. Scr. 89(11), 115101 (2014)

    Article  ADS  Google Scholar 

  42. D. Mondal, A.K. Pati, Quantum speed limit for mixed states using an experimentally realizable metric. Phys. Lett. A 380(16), 1395 (2026)

    Article  ADS  MathSciNet  Google Scholar 

  43. D.P. Pires, M. Cianciaruso, L.C. Céleri, G. Adesso, D.O. Soares-Pinto, Generalized geometric quantum speed limits. Phys. Rev. X 6(2), 021031 (2016)

    Google Scholar 

  44. F. Grosshans, N.J. Cerf, Continuousvariable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett. 92(4), 047905 (2004)

    Article  ADS  Google Scholar 

  45. M.J.W. Hall, H.M. Wiseman, Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information. New J. Phys. 14(3), 033040 (2012)

    Article  ADS  Google Scholar 

  46. M. Oumennana, M. Mansour, Quantum coherence versus quantum-memory-assisted entropic uncertainty relation in a mixed spin-(1/2, 1) Heisenberg dimer. Opt. Quant. Electron. 55(7), 594 (2023)

    Article  Google Scholar 

  47. Y. Khedif, S. Haddadi, M.R. Pourkarimi, M. Daoud, Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phys. Lett. A 36(29), 2150209 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.U. Rahman, M.Y. Abd-Rabbou, S.M. Zangi, M. Javed, Entropic uncertainty and quantum correlations dynamics in a system of two qutrits exposed to local noisy channels. Phys. Scr. 97(10), 105101 (2022)

    Article  ADS  Google Scholar 

  49. A.U. Rahman, N. Zidan, S.M. Zangi, M. Javed, H. Ali, Quantum memory-assisted entropic uncertainty and entanglement dynamics: two qubits coupled with local fields and Ornstein Uhlenbeck noise. Quant. Inf. Process. 21(10), 354 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Wang, F. Ming, A.J. Huang, W.Y. Sun, L. Ye, Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14(9), 095204 (2017)

    Article  ADS  Google Scholar 

  51. S. Haddadi, M.R. Pourkarimi, S. Haseli, Multipartite uncertainty relation with quantum memory. Sci. Rep. 11(1), 13752 (2021)

    Article  ADS  Google Scholar 

  52. L. Wu, L. Ye, D. Wang, Tighter generalized entropic uncertainty relations in multipartite systems. Phys. Rev. A 106(6), 062219 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  53. J.M. Renes, J.C. Boileau, Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103(2), 020402 (2009)

    Article  ADS  Google Scholar 

  54. F. Ming, D. Wang, X.G. Fan, W.N. Shi, L. Ye, J.L. Chen, Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A 102(1), 012206 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Liu, L.Z. Mu, H. Fan, Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91(4), 042133 (2015)

    Article  ADS  Google Scholar 

  56. B.F. Xie, F. Ming, D. Wang, L. Ye, J.L. Chen, Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A 104(6), 062204 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  57. X. Zheng, G.F. Zhang, The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction. Quant. Inf. Process. 16, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. A.J. Huang, J.D. Shi, D. Wang, L. Ye, Steering quantummemory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quant. Inf. Process. 16(2), 46 (2017)

    Article  ADS  Google Scholar 

  59. A.J. Huang, D. Wang, J.M. Wang, J.D. Shi, W.Y. Sun, L. Ye, Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quant. Inf. Process. 16, 204 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. M. Asoudeh, V. Karimipour, Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71(2), 022308 (2005)

    Article  ADS  Google Scholar 

  61. Q. Liang, Quantum correlations in a two-qubit Heisenberg XX model under intrinsic decoherence. Commun. Theor. Phys. 60(4), 391 (2013)

    Article  Google Scholar 

  62. G.F. Zhang, S.S. Li, Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72(3), 034302 (2005)

    Article  ADS  Google Scholar 

  63. M. Oumennana, A.U. Rahman, M. Mansour, Quantum coherence versus non-classical correlations in XXZ spin-chain under Dzyaloshinsky–Moriya (DM) and KSEA interactions. Appl. Phys. B 128(9), 162 (2022)

    Article  ADS  Google Scholar 

  64. M. Oumennana, Z. Dahbi, M. Mansour, Y. Khedif, Geometric measures of quantum correlations in a two-qubit heisenberg XXZ model under multiple interactions effects. J. Russ. Laser Res. 43(5), 533–545 (2022)

    Article  Google Scholar 

  65. Z. Dahbi, M. Oumennana, M. Mansour, Intrinsic decoherence effects on correlated coherence and quantum discord in XXZ Heisenberg model. Opt. Quant. Electron. 55(5), 412 (2023)

    Article  Google Scholar 

  66. J.L. Li, F. Ming, X.K. Song, L. Ye, D. Wang, Characterizing entanglement and measurement’s uncertainty in neutrino oscillations. Eur. Phys. J. C 81(8), 728 (2021)

    Article  ADS  Google Scholar 

  67. D. Wang, F. Ming, X.K. Song, L. Ye, J.L. Chen, Entropic uncertainty relation in neutrino oscillations. Eur. Phys. J. C 80, 1–9 (2020)

    Article  Google Scholar 

  68. F. Ming, X.K. Song, J. Ling, L. Ye, D. Wang, Quantification of quantumness in neutrino oscillations. Eur. Phys. J. C 80, 1–9 (2020)

    Article  Google Scholar 

  69. J.L. Li, F. Ming, X.K. Song, L. Ye, D. Wang, Quantumness and entropic uncertainty in curved space-time. Eur. Phys. J. C 82(8), 726 (2022)

    Article  ADS  Google Scholar 

  70. K.K. Sharma, Herring-Flicker coupling and thermal quantum correlations in bipartite system. Quant. Inf. Process. 17, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  71. A. Ait Chlih, N. Habiballah, M. Nassik, D. Khatib, Entanglement teleportation in anisotropic Heisenberg XY spin model with Herring-Flicker coupling. Mod. Phys. Lett. A 37(06), 2250038 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  72. Z. Huang, S. Kais, Entanglement as measure of electron-electron correlation in quantum chemistry calculations. Chem. Phys. Lett. 413(1–3), 1 (2005)

    Article  ADS  Google Scholar 

  73. C. Herring, M. Flicker, Asymptotic exchange coupling of two hydrogen atoms. Phys. Rev. 134(2A), A362 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The concept for the manuscript was proposed by MM. Computation and graphical tasks were carried out by ZB and MO. All authors participated in the analysis and interpretation of the results. MM provided supervision for this research

Corresponding author

Correspondence to Mostafa Mansour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Ethical approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouafia, Z., Oumennana, M., Mansour, M. et al. Thermal entanglement versus quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg system with Herring–Flicker coupling under Dzyaloshinsky–Moriya interaction. Appl. Phys. B 130, 94 (2024). https://doi.org/10.1007/s00340-024-08228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08228-7

Navigation