Skip to main content
Log in

Optomechanical cavity-atom interaction through field coupling in a composed quantum system: a filtering approach

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a composed quantum system is investigated which can potentially be used to manipulate the state of a qubit through measurement-based feedback (MBF) control. The composed quantum system consists of a nonlinear single-sided Fabry-P´erot optomechanical cavity cascaded with a 2-level atom and it is driven by a coherent quantum field. Due to the presence of the quantum measurement, the state of the atom needs to be estimated based on the measurement results. The effect of the optomechanical cavity on the state of the 2-level atom is disclosed through a quantum filtering approach. To this end, the SLH framework is utilized to analyze and model the considered composed quantum system. Then, filtering equations of the composed quantum system are derived. Numerical simulations are done for different initial conditions as well as different input quantum fields. In addition, the effects of atom and cavity parameters are studied and the result shows that choosing appropriate values for these parameters can change the behavior of the system in the desired way. The filter simulation results are validated by demonstrating that the average of the estimations for 50 ensembles follows the result from the master equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. Z. Rahimkhani, M. Yaghobi, K. Javidan, Quantum filtering equations for atom-single photon interaction by homodyne detection: considering full interaction Rabi model. Optik (Stuttg) 140, 619–625 (2017)

    ADS  Google Scholar 

  2. C. Altafini, F. Ticozzi, Modeling and control of quantum systems: an introduction. IEEE Trans. Autom. Control 57(8), 1898–1917 (2012)

    MathSciNet  MATH  Google Scholar 

  3. P. Piergentili, L. Catalini, M. Bawaj, S. Zippilli, N. Malossi, R. Natali, D. Vitali, G. Di Giuseppe, Two-membrane cavity optomechanics. New J. Phys. 20(8), 083024 (2018)

    ADS  Google Scholar 

  4. L. Bouten, R. Van Handel, M.R. James, An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007)

    MathSciNet  MATH  Google Scholar 

  5. J. Combes, J. Kerckhoff, M. Sarovar, The SLH framework for modeling quantum input-output networks. Adv. Phys. X 2(3), 784–888 (2017)

    Google Scholar 

  6. S. Qamar, S. Cong, Observer-based feedback control of two-level open stochastic quantum system. J. Franklin Inst. 356(11), 5675–5691 (2019)

    MathSciNet  MATH  Google Scholar 

  7. A. Dabrowska, G. Sarbicki, D. Chruściński, Quantum trajectories for a system interacting with environment in a single-photon state: Counting and diffusive processes. Phys. Rev. A 96(5), 053819 (2017)

    ADS  Google Scholar 

  8. Daeichian, A., Aghaei, S.: Estimating the state of a one-sided quantum cavity driven by vacuum field in Schrödinger picture. In: Proc. 7th Int. Conf. Control Instrum. Autom. (ICCIA2021), pp. 1–5 (2021)

  9. A. Daeichian, Feedback control of quantum systems to stabilize superposition states. IEEE Trans. Autom. Control. (2023). https://doi.org/10.1109/TAC.2023.3237504

    Article  Google Scholar 

  10. Z. Dong, G. Zhang, N.H. Amini, Single-photon quantum filtering with multiple measurements. Int. J. Adapt. Control Signal Process. 32(3), 528–546 (2018)

    MathSciNet  MATH  Google Scholar 

  11. T. Green, H. Uys, M.J. Biercuk, High-order noise filtering in nontrivial quantum logic gates. Phys. Rev. Lett. 109(2), 020501 (2012)

    ADS  Google Scholar 

  12. S.S. Szigeti, A.R. Carvalho, J.G. Morley, M.R. Hush, Ignorance is bliss: general and robust cancellation of decoherence via no-knowledge quantum feedback. Phys. Rev. Lett. 113(2), 020407 (2014)

    ADS  Google Scholar 

  13. K. Keane, A.N. Korotkov, Simplified quantum error detection and correction for superconducting qubits. Phys. Rev. A At. Mol. Opt. Phys. 86(1), 012333 (2012)

    ADS  Google Scholar 

  14. M.H. Schleier-Smith, I.D. Leroux, V. Vuletić, States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104(7), 073604 (2010)

    ADS  Google Scholar 

  15. R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490(7418), 77–80 (2012)

    ADS  Google Scholar 

  16. W. Cui, F. Nori, Feedback control of Rabi oscillations in circuit QED. Phys. Rev. A At. Mol. Opt. Phys. 88(6), 063823 (2013)

    ADS  Google Scholar 

  17. D. Ristè, C.C. Bultink, K.W. Lehnert, L. DiCarlo, Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. lett. 109(24), 240502 (2012)

    ADS  Google Scholar 

  18. B. Qi, H. Pan, L. Guo, Further results on stabilizing control of quantum systems. IEEE Trans. Autom. Control 58(5), 1349–1354 (2013)

    MATH  Google Scholar 

  19. P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M.H. Devoret, F. Mallet, B. Huard, Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X 3(2), 021008 (2013)

    Google Scholar 

  20. J. Ma, X. Wang, C.P. Sun, F. Nori, Quantum spin squeezing. Phys. Rep. 509(2–3), 89–165 (2011)

    MathSciNet  ADS  Google Scholar 

  21. I.D. Leroux, M.H. Schleier-Smith, V. Vuletić, Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104(7), 073602 (2010)

    ADS  Google Scholar 

  22. J. Song, Y. Xia, X.D. Sun, Noise-induced quantum correlations via quantum feedback control. J. Opt. Soc. Am. B 29(3), 268–273 (2012)

    ADS  Google Scholar 

  23. G. Kießlich, C. Emary, G. Schaller, T. Brandes, Reverse quantum state engineering using electronic feedback loops. New J. Phys. 14(12), 123036 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  24. R.N. Stevenson, A.R.R. Carvalho, J.J. Hope, Production of entanglement in Raman three-level systems using feedback. Eur. Phys. J. D 61(2), 523–529 (2011)

    ADS  Google Scholar 

  25. Y. Li, B. Luo, H. Guo, Entanglement and quantum discord dynamics of two atoms under practical feedback control. Phys. Rev. A At. Mol. Opt. Phys. 84(1), 012316 (2011)

    Google Scholar 

  26. F.E. Becerra, J. Fan, G. Baumgartner, J.T.K.J. Goldhar, J.T. Kosloski, A. Migdall, Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination. Nat. Photon. 7(2), 147–152 (2013)

    ADS  Google Scholar 

  27. J. Combes, H.M. Wiseman, K. Jacobs, A.J. O’Connor, Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis. Phys. Rev. A At. Mol. Opt. Phys. 82(2), 022307 (2010)

    ADS  Google Scholar 

  28. G.A. Brawley, M.R. Vanner, P.E. Larsen, S. Schmid, A. Boisen, W.P. Bowen, Nonlinear optomechanical measurement of mechanical motion. Nat. Commun. 7(1), 1–7 (2016)

    Google Scholar 

  29. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014)

    ADS  Google Scholar 

  30. G.J. Milburn, M.J. Woolley, An introduction to quantum optomechanics. Acta Phys. Slovaca 61(5), 483–602 (2011)

    ADS  Google Scholar 

  31. Mansouri, D., Rezaie, B., Ranjbar, A., Daeichian, A.: The dynamic of a quantum optomechanical cavity cascaded with a two-level atom. In: Proc. 7th Int. Conf. Control Instrum. Autom. (ICCIA2021), pp. 1–4 (2021)

  32. W.H.P. Nielsen, Y. Tsaturyan, C.B. Møller, E.S. Polzik, A. Schliesser, Multimode optomechanical system in the quantum regime. Proc. Natl. Acad. Sci. 114(1), 62–66 (2017)

    ADS  Google Scholar 

  33. K. Stannigel, P. Komar, S.J.M. Habraken, S.D. Bennett, M.D. Lukin, P. Zoller, P. Rabl, Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109(1), 013603 (2012)

    ADS  Google Scholar 

  34. K. Stannigel, P. Rabl, A.S. Sørensen, M.D. Lukin, P. Zoller, Optomechanical transducers for quantum-information processing. Phys. Rev. A 84(4), 042341 (2011)

    ADS  Google Scholar 

  35. C. Dong, Y. Wang, H. Wang, Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2(4), 510–519 (2015)

    MathSciNet  Google Scholar 

  36. B.D. Hauer, A. Metelmann, J.P. Davis, Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities. Phys. Rev. A 98(4), 043804 (2018)

    ADS  Google Scholar 

  37. L. Luo, K. Wang, K. Guo, F. Shen, X. Zhang, Z. Yin, Z. Guo, Tunable manipulation of terahertz wavefront based on graphene metasurfaces. J. Opt. (United Kingdom) 19(11), 115104 (2017)

    ADS  Google Scholar 

  38. N. Kralj, M. Rossi, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. Di Giuseppe, D. Vitali, Enhancement of three-mode optomechanical interaction by feedback-controlled light. Quantum Sci. Technol. 2(3), 034014 (2017)

    ADS  Google Scholar 

  39. C. Lan, T.J. Tarn, Q.S. Chi, J.W. Clark, Analytic controllability of time-dependent quantum control systems. J. Math. Phys. 46(5), 052102 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  40. T.P. Purdy, P.L. Yu, R.W. Peterson, N.S. Kampel, C.A. Regal, Strong optomechanical squeezing of light. Phys. Rev. X 3(3), 031012 (2013)

    Google Scholar 

  41. A. Kundu, J.A. Miszczak, Transparency and enhancement in fast and slow light in q-deformed optomechanical system. Ann. Phys. (Berlin) 534(8), 2200026 (2022)

    MathSciNet  ADS  Google Scholar 

  42. Q. Liao, X. Wang, G. He, L. Zhou, Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system. Chin. Phys. B 30(9), 094205 (2021)

    ADS  Google Scholar 

  43. A. Daeechian, F. Shekholeslam, Survey and comparison of quantum systems: modeling, stability and controllability. J. Control 5(4), 20–31 (2012)

    Google Scholar 

  44. J.E. Gough, M.R. James, H.I. Nurdin, J. Combes, Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states. Phys. Rev. A At. Mol. Opt. Phys. 86(4), 043819 (2012)

    ADS  Google Scholar 

  45. A. Daeichian, F. Sheikholeslam, Behaviour of two-level quantum system driven by non-classical inputs. IET Control Theory Appl. 7(15), 1877–1887 (2013)

    MathSciNet  Google Scholar 

  46. D. Mansouri, B. Rezaie, N. Ranjbar, A. Daeichian, Coherent feedback ground-state cooling for a mechanical resonator assisted by an atomic ensemble. Eur. Phys. J. Plus 137(9), 1032 (2022)

    Google Scholar 

  47. D. Mansouri, B. Rezaie, N. Ranjbar, A. Daeichian, Cavity-assisted coherent feedback cooling of a mechanical resonator to the ground-state in the unresolved sideband regime. J. Phys. B 55(16), 165501 (2022)

    ADS  Google Scholar 

  48. Y. Guo, K. Li, W. Nie, Y. Li, Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A At. Mol. Opt. Phys. 90(5), 053841 (2014)

    ADS  Google Scholar 

  49. Z.Q. Yin, T. Li, M. Feng, Three-dimensional cooling and detection of a nanosphere with a single cavity. Phys. Rev. A At. Mol. Opt. Phys. 83(1), 013816 (2011)

    ADS  Google Scholar 

  50. K. Sala, T. Tufarelli, Exploring corrections to the Optomechanical Hamiltonian. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  51. S. Zippilli, N. Kralj, M. Rossi, G. Di Giuseppe, D. Vitali, Cavity optomechanics with feedback-controlled in-loop light. Phys. Rev. A 98(2), 023828 (2018)

    ADS  Google Scholar 

  52. A.M. Dabrowska, Quantum filtering equations for a system driven by nonclassical fields. Open Syst. Inf. Dyn. 25(2), 18500075 (2018)

    MathSciNet  MATH  Google Scholar 

  53. A.M. Dąbrowska, Quantum trajectories for environment in superposition of coherent states. Quantum Inf. Process. 18(7), 224 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  54. B.Q. Baragiola, J. Combes, Quantum trajectories for propagating Fock states. Phys. Rev. A 96(2), 023819 (2017)

    ADS  Google Scholar 

  55. M. Rossi, D. Mason, J. Chen, A. Schliesser, Observing and verifying the quantum trajectory of a mechanical resonator. Phys. Rev. Lett. 123(16), 163601 (2019)

    ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Daryoosh Mansouri wrote the main manuscript text and all other authors reviewed the manuscript.

Corresponding author

Correspondence to Behrooz Rezaie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Deriving SME equations

Appendix: Deriving SME equations

The procedure of deriving filter equations for \({\sigma }_{z}\) is presented in the following and equations for other operators can be derived similarly.

Substituting \({\sigma }_{z}\) into (8) gives:

$$\begin{array}{c}\mathrm{d}{\pi }_{t}\left({\sigma }_{z}\right)={\pi }_{t}(-i[{\sigma }_{z},{H}_{T}]+{\sum }_{j=1}^{n}({{L}_{j}}^{\dag }{\sigma }_{z}{L}_{j}-\frac{1}{2}{\sigma }_{z}{{L}_{j}}^{\dag }{L}_{j}-\frac{1}{2}{{L}_{j}}^{\dag }{L}_{j}{\sigma }_{z}))\mathrm{d}t+\\ \left({\pi }_{t}\left({\sigma }_{z}{L}_{1}+{{L}_{1}}^{\dag }{\sigma }_{z}\right)-{\pi }_{t}\left({L}_{1}+{{L}_{1}}^{\dag }\right){\pi }_{t}\left({\sigma }_{z}\right)\right)\mathrm{d}W\left(t\right)\end{array}$$
(15)

Pauli matrices of the 2-level atom can be written as \({\sigma }_{z}=|1\rangle \langle 1|-|0\rangle \langle 0|,\) \({\sigma }_{x}=|1\rangle \langle 0|+|0\rangle \langle 1|\),\({\sigma }_{y}=i(|0\rangle \langle 1|-|1\rangle \langle 0|)\). Substituting these relations into \(-i[{\sigma }_{z},H]\) and simplifying by doing some calculations using \(\langle 1|0\rangle =\langle 0|1\rangle =0\) and \(\langle 1|1\rangle =\langle 0|0\rangle =1\) gives:

$$\begin{aligned} & - i\left[ {\sigma _{z} ,H} \right] = \frac{{\sqrt {k\gamma } }}{2}\left( {\left( {i\sigma _{y} - \sigma _{x} } \right)a^{\dag } - a\left( {\sigma _{x} + i\sigma _{y} } \right)} \right) \nonumber \\ & \quad + \frac{{\sqrt \gamma }}{2}\left( {\left( {i\sigma _{y} - \sigma _{x} } \right)\alpha ^{{\text{*}}} - \alpha \left( {\sigma _{x} + i\sigma _{y} } \right)} \right) \end{aligned}$$
(16)

Substituting \(L_{1} = \sqrt k a + {\raise0.7ex\hbox{${\sqrt \gamma }$} \!\mathord{\left/ {\vphantom {{\sqrt \gamma } 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}\sigma _{x} - {\raise0.7ex\hbox{${\sqrt \gamma }$} \!\mathord{\left/ {\vphantom {{\sqrt \gamma } 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}i\sigma _{y} + \alpha\) into the drift part of (15) gives:

$${\sigma }_{z}{{L}_{1}}^{\dag }{L}_{1}-\frac{1}{2}{\sigma }_{z}{{L}_{1}}^{\dag }{L}_{1}-\frac{1}{2}{{L}_{1}}^{\dag }{L}_{1}{\sigma }_{z}=-\gamma \left(I+{\sigma }_{z}\right)+\frac{\sqrt{k\gamma }}{2}\left(\left(i{\sigma }_{y}-{\sigma }_{x}\right){a}^{\dag }-a\left({\sigma }_{x}+{i\sigma }_{y}\right)\right)+\frac{\sqrt{\gamma }}{2}\left(\left(i{\sigma }_{y}-{\sigma }_{x}\right){\alpha }^{*}-\alpha \left({\sigma }_{x}+{i\sigma }_{y}\right)\right)$$
(17)

For \({L}_{2}\) and \({L}_{3}\) we have:

$$\begin{array}{c}{\sigma }_{z}{{L}_{2}}^{\dag }{L}_{2}-\frac{1}{2}{\sigma }_{z}{{L}_{2}}^{\dag }{L}_{2}-\frac{1}{2}{{L}_{2}}^{\dag }{L}_{2}{\sigma }_{z}=0\\ {\sigma }_{z}{{L}_{3}}^{\dag }{L}_{3}-\frac{1}{2}{\sigma }_{z}{{L}_{3}}^{\dag }{L}_{3}-\frac{1}{2}{{L}_{3}}^{\dag }{L}_{3}{\sigma }_{z}=0\end{array}$$
(18)

Substituting \({\sigma }_{z}\) and \({L}_{1}\) from (7) to stochastic term of (15) and simplifying gives:

$$\begin{array}{c}{\pi }_{t}\left({\sigma }_{z}{L}_{1}+{{L}_{1}}^{\dag }{\sigma }_{z}\right)-{\pi }_{t}\left({L}_{1}+{{L}_{1}}^{\dag }\right){\pi }_{t}\left({\sigma }_{z}\right)={\pi }_{t}\left(-\sqrt{\gamma }{\sigma }_{x}+\sqrt{k}{\sigma }_{z}\left(a+{a}^{\dag }\right)+{\sigma }_{z}\left(\alpha +{\alpha }^{*}\right)\right)-\\ {\pi }_{t}\left(\sqrt{\gamma }{\sigma }_{x}+\sqrt{k}(a+{a}^{\dag })+(\alpha +{\alpha }^{*})\right){\pi }_{t}({\sigma }_{z})\end{array}$$
(19)

Aggregating (16)–(19) gives (9).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, D., Rezaie, B., Ranjbar N, A. et al. Optomechanical cavity-atom interaction through field coupling in a composed quantum system: a filtering approach. Appl. Phys. B 129, 58 (2023). https://doi.org/10.1007/s00340-023-07995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07995-z

Navigation