Skip to main content
Log in

Dynamics of Two-Level Atom in Cavity Optomechanics: Strong Coupling Limit Study

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This article explores the dynamics of an optomechanical system consisting of a single movable mirror and a two-level atom in the strong coupling limit, initially considering a vacuum mechanical mode. The impact of varying cavity-mirror and atom-photon couplings is analyzed across different limits. Coherent states and Fock states for the cavity mode are investigated, revealing that the mirror’s position and atomic inversion patterns are predominantly influenced by the initial cavity state. The study includes an investigation of the linear entropy between the atom and the subsystem. Notably, the system exhibits strong nonclassical behavior that is absent when the atom is not present. Specifically, the mechanical mode displays sub-Poissonian statistics when interacting with a vacuum cavity mode and exhibits mechanical squeezing when initialized with a two-photon state. A search technique is developed to uncover additional mechanical nonclassical features by adjusting the coupling parameters and adapting the input Fock state accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mancini, S., Manko, V.I., Tombesi, P.: Phys. Rev. A. 55, 3042 (1997)

    ADS  Google Scholar 

  2. Braunstein, S.L., Loock, P.: Rev. Mod. Phys. 77, 513 (2005)

    ADS  Google Scholar 

  3. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  4. Nichols, E.F., Hull, G.: Phy. Rev. (Series I) 13, 307 (1901)

    ADS  Google Scholar 

  5. Caves, C.M.: Phys. Rev. Lett. 45, 75 (1980)

    ADS  Google Scholar 

  6. Anetsberger, G., Arcizet, O., Unterreithmeier, Q.P., Riviére, R., Schliesser, A., Weig, E.M., Kotthaus, J.P., Kippenberg, T.J.: Nat. Phys. 5, 909 (2009)

    Google Scholar 

  7. Huang, S., Agarwal, G.: Phys. Rev. A. 81, 033830 (2010)

    ADS  Google Scholar 

  8. Purdy, T.P., Brooks, D.W.C., Botter, T., Brahms, N., Ma, Z.-Y., Kurn, D.M.S.: Phys. Rev. Lett. 105, 133602 (2010)

    ADS  Google Scholar 

  9. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Nat. 482, 63 (2012)

    ADS  Google Scholar 

  10. Yi, Z., Gu, W.-J., Wei, S.-J., Xu, D.-H.: Opt. Commun. 341, 28 (2015)

    ADS  Google Scholar 

  11. Corbitt, T., Chen, Y., Innerhofer, E., Müller Ebhardt, H., Ottaway, D., Rehbein, H., Sigg, D., Whitcomb, S., Wipf, C., Mavalvala, N.: Phy. Rev. Lett. 98, 150802 (2007)

    ADS  Google Scholar 

  12. Metzger, C.H., Karrai, K.: Nat. 432, 1002 (2004)

    ADS  Google Scholar 

  13. Kleckner, D., Bouwmeester, D.: Nat. 444, 75 (2006)

    ADS  Google Scholar 

  14. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T.J., Vahala, K.J.: Phys. Rev. Lett. 94, 223902 (2005)

    ADS  Google Scholar 

  15. Thompson, J., Zwickl, B., Jayich, A., Marquardt, F., Girvin, S., Harris, J.: Nat. 452, 72 (2008)

    ADS  Google Scholar 

  16. Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Nat. Commun. 3, 1196 (2012)

    ADS  Google Scholar 

  17. Jiang, C., Cui, Y., Zhai, Z., Yu, H., Li, X., Chen, G.: Opt. Express 27, 30473 (2019)

    ADS  Google Scholar 

  18. Zhao, J., Wu, L., Li, T., Liu, Y.-X., Nori, F., Liu, Y., Du,: J.: Phys. Rev. Appl. 15, 024056 (2021)

  19. Mancini, S., Man’ko, V.I., Tombesi, P.: Phys. Rev. A. 55, 3042 (1997)

    ADS  Google Scholar 

  20. Bose, S., Jacobs, K., Knight, P.L.: Phys. Rev. A. 56, 4175 (1997)

    ADS  Google Scholar 

  21. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Nat. 475, 359 (2011)

    ADS  Google Scholar 

  22. Li, L., Nie, W.J., Chen, A.: Sci. Rep. 6, 35090 (2016)

    ADS  Google Scholar 

  23. Fonseca, P.Z.G., Aranas, E.B., Millen, J., Monteiro, T.S., Barker, P.F.: Phys. Rev. Lett. 117, 173602 (2016)

    ADS  Google Scholar 

  24. Liu, N., Li, J., Liang, J.-Q.: Int. J. Theor. Phys. 52, 706 (2013)

    Google Scholar 

  25. Liao, Q.H., Nie, W.J., Xu, J., Liu, Y., Zhou, N.R., Yan, Q.R., Chen, A., Liu, N.H., Ahmad, M.A.: Laser Phys. 26, 055201 (2016)

    ADS  Google Scholar 

  26. Liao, Q., Ye, Y., Jin, P., Zhou, N., Nie, W.: Int. J. Theor. Phys. 57, 1319 (2018)

    Google Scholar 

  27. Xu, Y.-J., Wang, S.-S., Chen, M.-R., Liao, Q.-H.: Laser Phys. 29, 065202 (2019)

    ADS  Google Scholar 

  28. Nadiki, M.H., Tavassoly, M.K.: Laser Phys. 26, 125204 (2016)

    ADS  Google Scholar 

  29. Nadiki, M.H., Tavassolya, M.K., Yazdanpanah, N.: Eur. Phys. J. D. 72, 110 (2018)

    ADS  Google Scholar 

  30. Laha, P., Lakshmibala, S., Balakrishnan, V.: J. Opt. Soc. America B. 36, 575 (2019)

    ADS  Google Scholar 

  31. Nadiki, M.H., Tavassoly, M.K.: Opt. Commun. 452, 31 (2019)

    ADS  Google Scholar 

  32. Luo, M., Liu, W., He, Y., Gao, S.: Quan. Info. Proc. 19, 232 (2020)

    Google Scholar 

  33. Rafeie, M., Tavassoly, M.K.: Symmetry 15, 1770 (2023)

    ADS  Google Scholar 

  34. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  35. Hammerer, K., Wallquist, M., Genes, C., Ludwig, M., Marquardt, F., Treutlein, P., Zoller, P., Ye, J., Kimble, H.J.: Phys. Rev. Lett. 103, 063005 (2009)

    ADS  Google Scholar 

  36. Zhao, C., Li, X., Chao, S., Peng, R., Li, C., Zhou, L.: Phys. Rev. A. 101, 063838 (2020)

    ADS  Google Scholar 

  37. Othman, A.A.: Int. J. Theor. Phys. 60, 1574 (2021)

    Google Scholar 

  38. Othman, A.: Int. J. Theor. Phys. 62, 242 (2023)

    Google Scholar 

  39. Bose, S., Jacobs, K., Knight, P.L.: Phys. Rev. A. 56, 4175 (1997)

    ADS  Google Scholar 

  40. Dodonov, V.V., Man’ko, I.: Theory of Nonclassical States of Light. CRC Press, Boca Raton (2003)

    Google Scholar 

  41. Werner, R.F.: In: Springer Tracts in Modern Physics, 173. Springer, Heidelberg (2001)

  42. Mandel, L.: Opt Lett. 4, 205 (1979)

    ADS  Google Scholar 

  43. Yuen, H.P.: Phys. Rev. A. 13, 2226 (1976)

    ADS  Google Scholar 

  44. Caves, C.M., Schumaker, B.L.: Phys. Rev. A. 31, 3093 (1985)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support from Taibah University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Othman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A. Dynamics of Two-Level Atom in Cavity Optomechanics: Strong Coupling Limit Study. Int J Theor Phys 63, 77 (2024). https://doi.org/10.1007/s10773-024-05614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05614-x

Keywords

Navigation