Skip to main content
Log in

High-performance all-optical 3 × 8 photonic crystal decoder using nonlinear micro-ring resonators

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we proposed that a 3 × 8 all-optical decoder operates around 1.55 µm. We combined a 3-input port mixer (A1, A2, and A3) with an excitation port (E) and an 8-output port switch to create the proposed structure. The mixer is a square array of GaAs dielectric rods with a refractive index of 3.37. The switch is a square network of GaAs with a linear refractive index equal to 3.37 and a nonlinear Kerr coefficient equal to 1.6 × 10–17 m2/w. We controlled the switch’s optical behavior via the applied optical power intensity. The switch insertion loss values are between − 0.043 and − 0.6 dB, and the maximum cross talk is between − 7.96 and − 14.62 dB. The intensity applied to the combiner input ports is 600 w/m2. In order to activate the decoder, we excited it to a power of 100 w/m2. To perform the necessary simulations, we used the finite-element method implemented in COMSOL Multiphysics software. The proposed structure works completely in the optical domain without any electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Rostamizadeh, M. Taghizadeh, J. Jamali et al., Ultra-fast all optical decoder using photonic crystal based nonlinear ring resonators. Opt. Quant. Electron. 52, 105 (2020)

    Article  Google Scholar 

  2. T. Daghooghi, M. Soroosh, K. Ansari-Asl, A low-power all optical decoder based on photonic crystal nonlinear ring resonators. Optik 174, 400–408 (2018)

    Article  ADS  Google Scholar 

  3. S. Serajmohammadi, H. Alipour-Banaei, F. Mehdizadeh, All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47, 1109–1115 (2015)

    Article  MATH  Google Scholar 

  4. H. Alipour-Banaei, F. Mehdizadeh, High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photon Netw. Commun. 33, 152–158 (2017)

    Article  Google Scholar 

  5. J.B. Bai, J.Q. Wang, X.Y. Chen et al., Characteristics of 45° photonic crystal ring resonators based on square-lattice silicon rods. Optoelectron. Lett. 6, 203–206 (2010)

    Article  ADS  Google Scholar 

  6. H. Badaoui, M. Feham, M. Abri, Photonic-crystal band-pass resonant filters design using the two-dimensional FDTD method. Int. J. Comput. Sci. Issues 7(3), 127–132 (2011)

    Google Scholar 

  7. L. Farah, A.B. Hadjira, A. Mehadji, A novel 1.31 µm narrow-band TE mode filter design based on PBG shift in 2D photonic crystal slab. Photon. Lett. Poland 8(3), 82–84 (2016)

    Google Scholar 

  8. R. Bachir, B. Hadjira, A. Mehadji, Design of a 8-channel demultiplexer with ultra highly quality factor and low crosstalk for DWDM applications. Opt. Quant. Electron. 53, 363 (2021)

    Article  Google Scholar 

  9. A. Moungar, H. Badaoui, M. Abri, 16-channels wavelength efficient demultiplexing around 1.31/1.55m in 2D photonic crystal slab. Optik 193, 162685 (2019)

    Article  ADS  Google Scholar 

  10. M. Mohammadi, M. Seifouri, S. Olyaee et al., Optimization and realization all-optical compact five-channel demultiplexer using 2D photonic crystal based hexagonal cavities. J. Comput. Electron. 20, 984–992 (2021)

    Article  Google Scholar 

  11. A. Foroughifar, H. Saghaei, E. Veisi, Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt. Quant. Electron. 53, 101 (2021)

    Article  Google Scholar 

  12. D. Yan, J. Li, Y. Wang, Photonic crystal terahertz wave logic AND-XOR gate. Laser Phys. 30, 016208 (2019)

    Article  ADS  Google Scholar 

  13. L. Mokhtari, H.A. Badaoui, M. Abri, M. Abdelbasset, F. Lallam, B. Rahmi, Proposal of a new efficient or/Xor logic gates and all-optical nonlinear switch in 2D photonic crystal lattices. Prog. Electromagn. Res. C 106, 187–197 (2020)

    Article  Google Scholar 

  14. H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 125(19), 5701–5704 (2014)

    Article  ADS  Google Scholar 

  15. T.A. Moniem, All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2016)

    Article  ADS  Google Scholar 

  16. S. Gholamnejad, M. Zavvari, Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quant. Electron. 49, 302 (2017)

    Article  Google Scholar 

  17. A. Rahmani, F. Mehdizadeh, Application of nonlinear PhCRRs in realizing all optical half-adder. Opt. Quant. Electron. 50, 30 (2018)

    Article  Google Scholar 

  18. M. Neisy, M. Soroosh, K. Ansari-Asl, All optical half adder based on photonic crystal resonant cavities. Photon Netw. Commun. 35(2), 245–250 (2018)

    Article  Google Scholar 

  19. T.A. Moniem, All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62(19), 1643–1649 (2015)

    Article  ADS  Google Scholar 

  20. F. Parandin, M.M. Karkhanehchi, M. Naseri et al., Design of a high bitrate optical decoder based on photonic crystals. J. Comput. Electron. 17, 830–836 (2018)

    Article  Google Scholar 

  21. F. Mehdizadeh, H. Alipour-Banaei, S. Serajmohammadi, All optical 1 to 2 decoder based on photonic crystal ring resonator. J. Optoelectron. Nanostruct. 2(2), 1–10 (2017)

    MATH  Google Scholar 

  22. A. Askarian, G. Akbarizadeh, A novel proposal for all optical 2 × 4 decoder based on photonic crystal and threshold switching method. Opt. Quant. Electron. 54, 84 (2022)

    Article  Google Scholar 

  23. B. Rahmi, H. Badaoui, M. Abri, Original architecture of an efficient all-optical 2 × 4 photonic crystals decoder based on nonlinear ring resonators. Opt. Quant. Electron. 54, 676 (2022). https://doi.org/10.1007/s11082-022-04110-y

    Article  Google Scholar 

  24. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, E. Farshidi, A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9(2), 1–11 (2017)

    Article  Google Scholar 

  25. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei et al., All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quant. Electron. 49, 38 (2017)

    Article  Google Scholar 

  26. Y. Ma, H. Zhang, H. Zhang, T. Liu, W. Li, Properties of unidirectional absorption in one-dimensional plasma photonic crystals with ultra-wideband. Appl. Opt. 57(28), 8119–8124 (2018)

    Article  ADS  Google Scholar 

  27. C. Hu, H. Zhang, G. Liu, Analysis of unidirectional broadband absorption in one-dimensional superconductor photonic crystal with an asymmetric multiple-layered structure. Appl. Opt. 58(11), 2890–2897 (2019)

    Article  ADS  Google Scholar 

  28. H.F. Zhang, The band structures of three-dimensional nonlinear plasma photonic crystals. AIP Adv. 8(1), 015304 (2018)

    Article  ADS  Google Scholar 

  29. F. Mehdizadeh, H. Alipour-Banaei, S. Serajmohammadi, Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48, 20 (2016)

    Article  Google Scholar 

  31. S. Salimzadeh, H. Alipour-Banaei, A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators. J. Mod. Opt. 65(17), 2017–2024 (2018)

    Article  ADS  Google Scholar 

  32. G. Fibich, A.L. Gaeta, Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25(5), 335–337 (2000)

    Article  ADS  Google Scholar 

  33. A. Askarian, Design and analysis of all optical 2 × 4 decoder based on kerr effect and beams interference procedure. Opt. Quant. Electron. 53, 291 (2021)

    Article  Google Scholar 

  34. A. Rostamizadeh, M. Taghizadeh, J. Jamali, A. Andalib, Application of photonic crystal based nonlinear ring resonators for realizing all optical 3-to-8 decoder. J. Opt. Commun. 58(30), 8316–8321 (2019)

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed in the manuscript preparation, simulation and in the obtained results.

Corresponding author

Correspondence to Hadjira Badaoui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmi, B., Badaoui, H., Abri, M. et al. High-performance all-optical 3 × 8 photonic crystal decoder using nonlinear micro-ring resonators. Appl. Phys. B 129, 35 (2023). https://doi.org/10.1007/s00340-023-07981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07981-5

Navigation