Skip to main content
Log in

Time-resolved laser-induced incandescence on metal nanoparticles: effect of nanoparticle aggregation and sintering

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work examines the excessive absorption and anomalous cooling phenomena reported in laser-induced incandescence measurements on metal nanoparticles by considering the effects of aggregate structure and sintering. Experimental investigations are conducted on iron and molybdenum aerosols, which have different melting points, and thus respond differently to the laser pulse. Although aggregation enhances the absorption cross-section of the nanoparticles and allows for higher peak temperatures, this enhancement does not fully explain the observed excessive absorption. Furthermore, as the aggregates of refractory metals such as molybdenum cool, they may sinter through gradual grain boundary diffusion; this change in structure alters their absorption cross-section, manifesting as a rapid drop in the pyrometric temperature, which could explain the anomalous cooling reported for this metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Guo, Z. Yang, H. Dong, X. Guan, Q. Ren, X. Lv, X. Jin, Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Res. 88, 671–680 (2016)

    Article  Google Scholar 

  2. K. Jiang, D.A. Smith, A. Pinchuk, Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 117(51), 27073–27080 (2013)

    Article  Google Scholar 

  3. J. Beik, Z. Abed, F.S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, S.K. Kamrava, Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J. Control. Release 235, 205–221 (2016)

    Article  Google Scholar 

  4. L. Wang, M. Zheng, Z. Xie, Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6(5), 707–717 (2018)

    Article  Google Scholar 

  5. A. Boiarciuc, F. Foucher, C. Mounaïm-Rousselle, Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence. Appl. Phys. B 83(3), 413 (2006)

    Article  ADS  Google Scholar 

  6. R. Lemaire, M. Mobtil, Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques. Appl. Phys. B Lasers Opt. 119(4), 577–606 (2015)

    Article  ADS  Google Scholar 

  7. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  8. S. Robinson-Enebeli, S. Talebi-Moghaddam, K.J. Daun, Time-resolved laser-induced incandescence measurements on aerosolized nickel nanoparticles. J. Phys. Chem. A 125(28), 6273–6285 (2021)

    Article  Google Scholar 

  9. T.A. Sipkens, N.R. Singh, K.J. Daun, Time-resolved laser-induced incandescence characterization of metal nanoparticles. Appl. Phys. B Lasers Opt. 123(14), (2017)

  10. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Comparison of LII and TEM sizing during synthesis of iron particle chains. Proc. Combust. Inst. 30(1), 1689–1697 (2005)

    Article  Google Scholar 

  11. A. Eremin, E. Gurentsov, C. Schulz, Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature. J. Phys. D. Appl. Phys. 41(5), (2008)

  12. T.A. Sipkens, N.R. Singh, K.J. Daun, N. Bizmark, M. Ioannidis, Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B Lasers Opt. 119(4), 561–575 (2015)

    Article  ADS  Google Scholar 

  13. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and bayesian model selection. J. Appl. Phys. 123(9), 095103 (2018)

    Article  ADS  Google Scholar 

  14. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B Lasers Opt. 104(2), 285–295 (2011)

    Article  ADS  Google Scholar 

  15. M. Stephens, N. Turner, J. Sandberg, Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt. 42(19), 3726 (2003)

    Article  ADS  Google Scholar 

  16. S. Talebi-Moghaddam, S. Robinson-Enebeli, S. Musikhin, D.J. Clavel, J.C. Corbin, A. Klinkova, G.J. Smallwood, K.J. Daun, Multiphoton induced photoluminescence during time-resolved laser-induced incandescence experiments on silver and gold nanoparticles. J. Appl. Phys. 129(18), 183107 (2021)

    Article  ADS  Google Scholar 

  17. S. Talebi Moghaddam, K.J. Daun, Plasma emission during time-resolved laser-induced incandescence measurements of aerosolized metal nanoparticles. Appl. Phys. B Lasers Opt. 124(159), (2018)

  18. S. Talebi-Moghaddam, T.A. Sipkens, K.J. Daun, Laser-induced incandescence on metal nanoparticles: validity of the Rayleigh approximation. Appl. Phys. B Lasers Opt. 125(11), 1–16 (2019)

    Article  Google Scholar 

  19. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, F. Liu, Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame. Appl. Phys. B. 96, 657–669 (2009)

    Article  ADS  Google Scholar 

  20. K.J. Daun, G.J. Smallwood, F. Liu, Investigation of thermal accommodation coefficients in time-resolved laser-induced incandescence. J. Heat Transfer 130(12), 1–9 (2008)

    Article  Google Scholar 

  21. A.V. Gurentsov, E.V. Eremin, Sizing of Mo nanoparticles synthesised by Kr – F laser pulse photo-dissociation of Mo(CO)6. Appl. Phys. A Mater. Sci. Process 119, 615–622 (2015)

    Article  ADS  Google Scholar 

  22. I. Altman, Comment on ‘multiphoton induced photoluminescence during time-resolved laser-induced incandescence experiments on silver and gold nanoparticles.’ J. Appl. Phys 130, 46101 (2021)

    Article  Google Scholar 

  23. C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35(2), 648–687 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.V. Filippov, M. Zurita, D.E. Rosner, Fractal-like aggregates: relation between morphology and physical properties. J. Colloid Interface Sci. 229(1), 261–273 (2000)

    Article  ADS  Google Scholar 

  25. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Appl. Phys. B Lasers Opt. 83(3), 383–395 (2006)

    Article  ADS  Google Scholar 

  26. F. Liu, G.J. Smallwood, Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling. J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010)

    Article  ADS  Google Scholar 

  27. K.M. Watson, Thermodynamics of the liquid state. Ind. Eng. Chem. 35(4), 398–409 (1943)

    Article  Google Scholar 

  28. T.A. Sipkens, J. Menser, R. Mansmann, C. Schulz, K.J. Daun, Investigating temporal variation in the apparent volume fraction measured by time-resolved laser-induced incandescence. Appl. Phys. B Lasers Opt. 125(8), 1–20 (2019)

    Article  Google Scholar 

  29. J. Menser, K. Daun, T. Dreier, C. Schulz, Laser-induced incandescence from laser-heated silicon nanoparticles. Appl. Phys. B 122, (2016)

  30. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons Inc, Canada, 1998)

    Book  Google Scholar 

  31. C.M. Sorensen, J.B. Maughan, H. Moosmüller, Spherical particle absorption over a broad range of imaginary refractive index. J. Quant. Spectrosc. Radiat. Transf. 226, 81–86 (2019)

    Article  ADS  Google Scholar 

  32. M.N. Rahaman, Sintering of ceramics (CRC Press, 2007)

    Book  Google Scholar 

  33. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, Aggregate morphology evolution by sintering: number and diameter of primary particles. J. Aerosol Sci. 46, 7–19 (2012)

    Article  ADS  Google Scholar 

  34. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, Multiparticle sintering dynamics: from fractal-like aggregates to compact structures. Am. Chem. Soc. 27, 6358–6367 (2011)

    Google Scholar 

  35. M.L. Eggersdorfer, S.E. Pratsinis, Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder Technol. 25(1), 71–90 (2014)

    Article  Google Scholar 

  36. R. Mansmann, T.A. Sipkens, J. Menser, K.J. Daun, T. Dreier, C. Schulz, Detector calibration and measurement issues in multi-color time-resolved laser-induced incandescence. Appl. Phys. B 125(7), 126 (2019)

    Article  ADS  Google Scholar 

  37. N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, A. Schmidt-Ott, Generation of nanoparticles by spark discharge”. J. Nanoparticle Res. 11(2), 315–332 (2008)

    Article  ADS  Google Scholar 

  38. Rasband, WS.: “Image J,” U. S. Natl. Institutes Heal. Bethesda, Maryland, USA 1997–2018. https://imagej.nih.gov/ij/.

  39. R.J. Samson, G.W. Mulholland, J.W. Gentry, Structural analysis of soot agglomerates. Langmuir 3, 272–281 (1987)

    Article  Google Scholar 

  40. S. Krishnan, K.J. Yugawa, P.C. Nordine, Optical properties of liquid nickel and iron. Phys. Rev. B 55(13), 8201–8206 (1997)

    Article  ADS  Google Scholar 

  41. B.T. Barnes, Optical constants of incandescent refractory metals. J. Opt. Soc. Am. 56(11), 1546 (1966)

    Article  ADS  Google Scholar 

  42. T.H. Wang, Y.F. Zhu, Q. Jiang, Size effect on evaporation temperature of nanocrystals. Mater. Chem. Phys. 111(2–3), 293–295 (2008)

    Article  Google Scholar 

  43. K.K. Nanda, Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Appl. Phys. Lett. 87(2), 021909-1-021909–3 (2005)

    Article  ADS  Google Scholar 

  44. E.V. Gurentsov, A.V. Eremin, Size measurement of carbon and iron nanoparticles by laser induced incadescence. High Temp. 49(5), 667–673 (2011)

    Article  Google Scholar 

  45. G.W. Mulholland, C.F. Bohren, K.A. Fuller, Light scattering by agglomerates: coupled electric and magnetic dipole method. Langmuir 10, 2533–2546 (1994)

    Article  Google Scholar 

  46. Y. Deng, J. Zhang, K. Jiao, Viscosity measurement and prediction model of molten iron. Ironmak. Steelmak. 45(8), 773–777 (2018)

    Article  Google Scholar 

  47. S. Schönecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos, “Thermal surface free energy and stress of iron.” Sci. Rep. 5(1), 1–7 (2015)

    Article  Google Scholar 

  48. C. Wang, D.R. Baer, J.E. Amonette, M.H. Engelhard, J. Antony, Y. Qiang, Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131(25), 8824–8832 (2009)

    Article  Google Scholar 

  49. H. Moosmüller, C.M. Sorensen, Small and large particle limits of single scattering albedo for homogeneous, spherical particles. J. Quant. Spectrosc. Radiat. Transf. 204, 250–255 (2018)

    Article  ADS  Google Scholar 

  50. K.J. Daun, Thermal accommodation coefficients between polyatomic gas molecules and soot in laser-induced incandescence experiments. Int. J. Heat Mass Transf. 52(21–22), 5081–5089 (2009)

    Article  MATH  Google Scholar 

  51. H. Wei, H. Xu, Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 5(22), 10794–10805 (2013)

    Article  ADS  Google Scholar 

  52. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11(4), 1491 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Research Council (NRC) for their technical support, Prof. Steve Rogak for providing the spark discharge generator and Dr. Tim Sipkens for helpful discussions.

Funding

This research was supported by the Natural Science and Engineering Research Council Discovery under Grant No. RGPIN-2018-03756. Stephen Robinson-Enebeli acknowledges funding from the Indigenous and Black Engineering Fellowship (IBET).

Author information

Authors and Affiliations

Authors

Contributions

SR-E: conceptualization, investigation, methodology, validation, software, formal analysis, writing—original draft, writing—review and editing. ST-M: conceptualization, investigation, methodology, software, formal analysis, writing—review and editing. KJD: conceptualization, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to S. Robinson-Enebeli.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson-Enebeli, S., Talebi-Moghaddam, S. & Daun, K.J. Time-resolved laser-induced incandescence on metal nanoparticles: effect of nanoparticle aggregation and sintering. Appl. Phys. B 129, 25 (2023). https://doi.org/10.1007/s00340-022-07964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07964-y

Navigation