Skip to main content
Log in

Laser-induced incandescence on metal nanoparticles: validity of the Rayleigh approximation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Time-resolved laser-induced incandescence (TiRe-LII) is increasingly being used to characterize non-carbonaceous nanoparticles. However, there exist several measured phenomena, particularly on metal nanoparticles, that cannot be explained using traditional models. This paper shows that some of these phenomena may be due to errors caused by the Rayleigh approximation of Mie theory, which is a standard approach for modeling the spectral absorption of carbonaceous nanoparticles but is generally invalid for metal nanoparticles. Other measurement phenomena can be explained by combining Mie theory with a polydisperse particle size distribution or by considering the change in the refractive index as the nanoparticles melt. Also, the effect of the nanoparticle charge on optical properties is investigated and is found to have a negligible effect on the TiRe-LII model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.E. Kruis, H. Fissan, A. Peled, J. Aerosol Sci. 29, 511 (1998)

    ADS  Google Scholar 

  2. Y.L. Luo, Y.S. Shiao, Y.F. Huang, ACS Nano 5, 7796 (2011)

    Google Scholar 

  3. D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Cancer Lett. 209, 171 (2004)

    Google Scholar 

  4. H.X. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999)

    ADS  Google Scholar 

  5. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    ADS  Google Scholar 

  6. S.K. Sahoo, S. Parveen, J.J. Panda, Nanomedicine 3, 20 (2007)

    Google Scholar 

  7. T. L. Thiem, Y.-I. I. Lee, and J. Sneddon, Lasers in Atomic Spectroscopy: Selected Applications (Elsevier B.V., 1992), pp. 1–35

  8. M.A. Maurer-Jones, I.L. Gunsolus, C.J. Murphy, C.L. Haynes, Anal. Chem. 85, 3036 (2013)

    Google Scholar 

  9. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    ADS  Google Scholar 

  10. R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1974)

    ADS  Google Scholar 

  11. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2 (2015)

    Google Scholar 

  12. R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38, 5867 (1999)

    ADS  Google Scholar 

  13. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci 30, 71 (1999)

    ADS  Google Scholar 

  14. R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)

    ADS  Google Scholar 

  15. E.V. Gurentsov, A.V. Eremin, High Temp. 49, 667 (2011)

    Google Scholar 

  16. T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, J. Heat Transfer 135, 052401 (2013)

    Google Scholar 

  17. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl. Opt. 56, 8436 (2017)

    ADS  Google Scholar 

  18. G.S. Eom, C.W. Park, Y.H. Shin, K.H. Chung, S. Park, W. Choe, J.W. Hahn, Appl. Phys. Lett. 83, 1261 (2003)

    ADS  Google Scholar 

  19. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B Lasers Opt. 116, 623 (2014)

    ADS  Google Scholar 

  20. J. Menser, K. Daun, T. Dreier, C. Schulz, Appl. Phys. B 122, 277 (2016)

    ADS  Google Scholar 

  21. I.S. Altman, D. Lee, J.D. Chung, J. Song, M. Choi, Phys. Rev. B 63, 161402 (2001)

    ADS  Google Scholar 

  22. S. Maffi, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Phys. B Lasers Opt. 104, 357 (2011)

    ADS  Google Scholar 

  23. T.A. Sipkens, N.R. Singh, K.J. Daun, Appl. Phys. B Lasers 123, 14 (2017)

    ADS  Google Scholar 

  24. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B Lasers Opt. 104, 285 (2011)

    ADS  Google Scholar 

  25. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)

    Google Scholar 

  26. T.A. Sipkens, J. Menser, R. Mansmann, C. Schulz, K.J. Daun, Appl. Phys. B 125, 140 (2019)

    ADS  Google Scholar 

  27. T. A. Sipkens, Advances in the Modeling of Time-Resolved Laser-Induced Incandescence, University of Waterloo, 2018

  28. F. Migliorini, S. De Iuliis, S. Maffi, G. Zizak, Appl. Phys. B Lasers Opt. 120, 417 (2015)

    ADS  Google Scholar 

  29. F. Liu, S. Rogak, D.R. Snelling, M. Saffaripour, K.A. Thomson, G.J. Smallwood, Appl. Phys. B Lasers Opt. 122, 1 (2016)

    Google Scholar 

  30. L.B. Scaffardi, J.O. Tocho, Nanotechnology 17, 1309 (2006)

    ADS  Google Scholar 

  31. G. Bisker, D. Yelin, J. Opt. Soc. Am. B 29, 1383 (2012)

    ADS  Google Scholar 

  32. C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)

    Google Scholar 

  33. A.J. Fernandez, M.A. Shannon, R.E. Russo, X.L. Mao, Appl. Spectrosc. 49, 1054 (1995)

    ADS  Google Scholar 

  34. A.M. Brown, R. Sundararaman, P. Narang, W.A. Goddard, H.A. Atwater, ACS Nano 10, 957 (2015)

    Google Scholar 

  35. T. Haug, P. Klemm, S. Bange, J.M. Lupton, Phys. Rev. Lett. 115, 067403 (2015)

    ADS  Google Scholar 

  36. S.T. Moghaddam, K.J. Daun, Appl. Phys. B 124, 159 (2018)

    ADS  Google Scholar 

  37. R. Yen, J. Liu, N. Gloembergen, Opt. Commun. 35, 277 (1980)

    ADS  Google Scholar 

  38. C. Clavero, Nat. Photonics 8, 95 (2014)

    ADS  Google Scholar 

  39. T.A. Sipkens, N.R. Singh, K.J. Daun, N. Bizmark, M. Ioannidis, Appl. Phys. B Lasers Opt. 119, 561 (2015)

    Google Scholar 

  40. K. Daun, J. Menser, R. Mansmann, S.T. Moghaddam, T. Dreier, C. Schulz, J. Quant. Spectrosc. Radiat. Transf. 197, 3 (2017)

    ADS  Google Scholar 

  41. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B Lasers Opt. 96, 657 (2009)

    ADS  Google Scholar 

  42. T. Dreier, C. Schulz, Powder Technol. 287, 226 (2016)

    Google Scholar 

  43. H.A. Michelsen, M.A. Linne, B.F. Kock, M. Hofmann, B. Tribalet, C. Schulz, Appl. Phys. B Lasers Opt. 93, 645 (2008)

    ADS  Google Scholar 

  44. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B Lasers Opt. 87, 503 (2007)

    ADS  Google Scholar 

  45. H. Pan, J.A. Ritter, P.B. Balbuena, Langmuir 14, 6323 (1998)

    Google Scholar 

  46. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    ADS  Google Scholar 

  47. P. Johnson, R. Christy, Phys. Rev. B 9, 5056 (1974)

    ADS  Google Scholar 

  48. S. Krishnan, K.J. Yugawa, P.C. Nordine, Phys. Rev. B 55, 8201 (1997)

    ADS  Google Scholar 

  49. K.D. Li, P.M. Fauchet, Appl. Phys. Lett. 51, 1747 (1987)

    ADS  Google Scholar 

  50. B.T. Barnes, J. Opt. Soc. Am. 56, 1546 (1966)

    ADS  Google Scholar 

  51. J.C. Miller, Philos. Mag. 20, 1115 (1969)

    ADS  Google Scholar 

  52. H. Kobatake, H. Fukuyama, Metall. Mater. Trans. A 47, 3303 (2016)

    Google Scholar 

  53. G. Mie, Ann. Phys. 330, 377 (1908)

    Google Scholar 

  54. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Hoboken, 1983)

    Google Scholar 

  55. W.H. Dalzell, A.F. Sarofim, J. Heat Transfer 91, 100 (1969)

    Google Scholar 

  56. C.M. Sorensen, J.B. Maughan, H. Moosmüller, J. Quant. Spectrosc. Radiat. Transf. 226, 81 (2019)

    ADS  Google Scholar 

  57. D. Schebarchov, B. Auguié, E.C. Le Ru, Phys. Chem. Chem. Phys. 15, 4233 (2013)

    Google Scholar 

  58. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    ADS  Google Scholar 

  59. P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, Appl. Phys. B 122, 1 (2016)

    ADS  Google Scholar 

  60. C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35, 648–687 (2001)

    ADS  Google Scholar 

  61. S.T. Moghaddam, H. Ertürk, M.P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 178, 124 (2016)

    ADS  Google Scholar 

  62. S.T. Moghaddam, D. Avşar, H. Ertürk, M.P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 197, 106 (2017)

    ADS  Google Scholar 

  63. S.T. Moghaddam, P.J. Hadwin, K.J. Daun, J. Aerosol Sci. 111, 36 (2017)

    ADS  Google Scholar 

  64. E.M. Purcell, C.R. Pennypacker, Astrophys. J. 186, 705 (1973)

    ADS  Google Scholar 

  65. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)

    ADS  Google Scholar 

  66. D. Avşar, H. Ertürk, M.P. Mengüç, Mater. Res. Express 6, 065006 (2019)

    ADS  Google Scholar 

  67. D.W. Mackowski, M.I. Mishchenko, JOSA A 13, 2266 (1996)

    ADS  Google Scholar 

  68. D.W. Machowski, M.I. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 112, 2182 (2013)

    ADS  Google Scholar 

  69. G. Mur, I.E.E.E. Trans, Electromagn. Compat. EMC 23, 377 (1981)

    Google Scholar 

  70. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, Langmuir 27, 6358 (2011)

    Google Scholar 

  71. N.L. Peterson, J. Nucl. Mater. 69–70, 3 (1978)

    ADS  Google Scholar 

  72. H. Suzuki, S.I. Yin, Int. J. Phys. Sci. 3, 38 (2008)

    Google Scholar 

  73. J.M. Mitrani, M.N. Shneider, B.C. Stratton, Y. Raitses, Appl. Phys. Lett. 108, 054101 (2016)

    ADS  Google Scholar 

  74. R. Sundararaman, P. Narang, A.S. Jermyn, W.A. Goddard, H.A. Atwater, Nat. Commun. 5, 5788 (2014)

    ADS  Google Scholar 

  75. A. Gole, C.J. Murphy, Chem. Mater. 16, 3633 (2004)

    Google Scholar 

  76. C.F. Bohren, A.J. Hunt, Can. J. Phys. 55, 1930 (1977)

    ADS  Google Scholar 

  77. J. Klacka, M. Kocifaj, J. Quant. Spectrosc. Radiat. Transf. 106, 170 (2007)

    ADS  Google Scholar 

  78. X. Li, L. Xie, X. Zheng, J. Quant. Spectrosc. Radiat. Transf. 113, 251 (2012)

    ADS  Google Scholar 

  79. N. Wang, S. Liu, Z. Lin, Opt. Express 21, 20387 (2013)

    ADS  Google Scholar 

  80. J. Klacka, M. Kocifaj, Prog. Electromagn. Res. 109, 17 (2010)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science and Engineering Research Council Discovery Grant (RGPIN-2018-03756) and the Killam Foundation (Postdoctoral Fellowship). This research was enabled in part by support provided by (SHARCNET) (www.sharcnet.ca) and Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Talebi-Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Laser-Induced Incandescence”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi-Moghaddam, S., Sipkens, T.A. & Daun, K.J. Laser-induced incandescence on metal nanoparticles: validity of the Rayleigh approximation. Appl. Phys. B 125, 214 (2019). https://doi.org/10.1007/s00340-019-7325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7325-6

Navigation