Skip to main content
Log in

Towards generation of indistinguishable coherent states

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have addressed the characteristic distinguishability of coherent states in the temporal domain from a directly modulated quantum well-based gain-switched laser diode. We identify adjustable parameters to generate indistinguishable coherent states from an electrically pumped semiconductor laser using small-signal and large-signal models. The experiment confirms the generation of indistinguishable signal and decoy coherent states as predicted by the numerical simulation. In addition, the potential for indistinguishability has been explored in different types of coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Huang, S.-H. Sun, Z. Liu, V. Makarov, Quantum key distribution with distinguishable decoy states. Phys. Rev. A 98, 1 (2018)

    Google Scholar 

  2. S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, H. Weinfurter, Information leakage via side channels in freespace BB84 quantum cryptography. New J. Phys. 11(6), article id. 065001, 8 (2009)

  3. S. Goldwasser, Y. Tauman Kalai, Cryptographic Assumptions: A Position Paper (Springer, Berlin, 2016)

    MATH  Google Scholar 

  4. N. Sangouard, H. Zbinden, What are single photons good for? J. Mod. Opt. 59(17), 1458–1464 (2012)

    Article  ADS  Google Scholar 

  5. H.-K. Lo, J. Preskill, Security of quantum key distribution using weak coherent states with nonrandom phases. Quant. Inf. Comput. 7(5), 431–458 (2007)

    MathSciNet  MATH  Google Scholar 

  6. D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. Preskill, Security of quantum key distribution with imperfect devices. Quant. Inf. Comp. 4(5), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  7. R. Linke, Modulation induced transient chirping in single frequency lasers. IEEE J. Quant. Electron. 21(6), 593–597 (1985)

    Article  ADS  Google Scholar 

  8. P. Bhattacharya, Semiconductor optoelectronics devices, Prentice Hall

  9. A.R. Dixon, J.F. Dynes, M. Lucamarini et al., Quantum key distribution with hacking countermeasures and long term field trial. Sci. Rep. 7, 1978 (2017)

    Article  ADS  Google Scholar 

  10. L. Hua, Ambiguous discrimination among linearly dependent quantum states and its application to two-way deterministic quantum key distribution. J. Opt. Soc. Am. B 36, B26–B30 (2019)

    Article  ADS  Google Scholar 

  11. K. Tamaki, M. Curty, M. Lucamarini, Decoy-state quantum key distribution with a leaky source. New J. Phys. 18, 065008 (2016)

    Article  ADS  Google Scholar 

  12. X.-B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  13. M. Yamda, Theory of Semiconductor Lasers (Springer, New York, 2014)

    Book  Google Scholar 

  14. R.J. Hughes, J.E. Nordholt, D. Derkacs, C.G. Peterson, Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 (2002)

    Article  ADS  Google Scholar 

  15. H.-K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  16. Maan, P “Resonant Fluorescence Spectroscopy in Low Dimensional Semiconductor Structures.” MS Thesis (2017)

  17. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  18. Principles of Laser spectroscopy and Quantum Optics:Berman and Malinovsky-Princeton university press

  19. Thomas Strohm PhD. Thesis, Nov (2004)

  20. M. Gell-Mann, F. Low, Bound states in quantum field theory. Phys. Rev. 84, 350 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Maan, U.S. Patent No. 11,233,579. Washington, DC: USPTO (2022)

  22. X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  23. R. Shakhovoy et al., Influence of Chirp, Jitter, and Relaxation Oscillations on Probabilistic Properties of Laser Pulse Interference. IEEE Journal of Quantum Electronics (2021)

  24. P. Maan, Indistinguishable sub-nanosecond pulse generator. Results Opt. 6, 100198 (2022)

    Article  Google Scholar 

  25. Adapted from Niall Boohan, 2018: Program to simulate laser-rate equation in Python

  26. Z. Kis, W. Vogel, L. Davidovich, Nonlinear coherent states of trapped-atom motion. Phys. Rev. A 64, 033401 (2001)

    Article  ADS  Google Scholar 

  27. R. L. de Filho Matos, W. Vogel, Nonlinear coherent states. Phys. Rev. A 54, 5 (1996)

  28. V.I. Man’ko et al., f-Oscillators and nonlinear coherent states. Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  29. E.D. Schrödinger, stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    Article  ADS  Google Scholar 

  30. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. Lett. 131, 2766–2788 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  31. E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. R. Klauder, Continuous-representation theory. I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055–1058 (1963)

  33. A. Perelemov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)

    Book  Google Scholar 

  34. J.K. Sharma, C.L. Mehta, E.C.G. Sudarshan, Para-Bose coherent states. J. Math. Phys. 19, 2089 (1978)

    Article  ADS  Google Scholar 

  35. J.K. Sharma, C.L. Mehta, N. Mukunda, E.C.G. Sudarshan, Representation and properties of para-Bose oscillator operators. I. Energy position and momentum eigenstates. J. Math. Phys. 21, 2386 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. J.K. Sharma, C.L. Mehta, N. Mukunda, E.C.G. Sudarshan, Representation and properties of para-Bose oscillator operators. II. Coherent states and minimum uncertainty states. J. Math. Phys. 22, 78 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. B. Mojaveri, A. Dehghani, J. Bahrbeig, Nonlinear coherent states of the para-Bose oscillator and their non-classical feature (Eur. Phys. J, Plus, 2018)

    Book  Google Scholar 

  38. C.H. Alderete, L.V. Vergara, Nonclassical and semiclassical para-Bose states. Phys. Rev. A 95, 043835 (2017)

    Article  ADS  Google Scholar 

  39. C.H. Alderete, B.M. Rodriguez-Lara, Quantum simulation of driven para-Bose oscillators. Phys. Rev. A 95, 043835 (2017)

    Article  ADS  Google Scholar 

  40. A. Deghani, B. Mojaveri, S. Shirin, M. Saedi, Cat-states in the framework of Wigner–Heisenberg algebra. Ann. Phys. 362, 659–670 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study is funded by Robert Bosch LLC. The author would like to thank Thomas Strohm, Corporate Research Group, Robert Bosch GmbH for helpful discussions, and Thomas Hackenberg and team (XC/DBX), Robert Bosch GmbH for proof reading and improvement. The author also thank Reviewer 1 for constructive feedback and Reviewer 2 for suggesting Nonlinear Coherent States for the implementation of indistinguishable states.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranshu Maan.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maan, P. Towards generation of indistinguishable coherent states. Appl. Phys. B 128, 178 (2022). https://doi.org/10.1007/s00340-022-07892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07892-x

Navigation